دراسة تأثير عدد طبقات الشبكة العصبونية العميقة في تحسين مكافأة روبوت التعلم المعزز
تعتبر خوارزمية Q learning في التعلم المعزز احدى الخوارزميات التي تسمح للروبوت بتعلم البيئة المحيطة دون الحاجة الى عينات تدريب مسبقة بمبدأ المكافأة والعقاب للروبوت من خلال التفاعل مع البيئة. تم في هذا البحث دراسة تأثير عدد الطبقات الخفية المستخدمة في الشبكة العصبونية لتحسين مكافاة الروبوت حيث اظهرت...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | Arabic |
Published: |
damascus university
2023-08-01
|
Series: | مجلة جامعة دمشق للعلوم الهندسية |
Subjects: | |
Online Access: | http://journal.damascusuniversity.edu.sy/index.php/engj/article/view/4526 |
Summary: | تعتبر خوارزمية Q learning في التعلم المعزز احدى الخوارزميات التي تسمح للروبوت بتعلم البيئة المحيطة دون الحاجة الى عينات تدريب مسبقة بمبدأ المكافأة والعقاب للروبوت من خلال التفاعل مع البيئة. تم في هذا البحث دراسة تأثير عدد الطبقات الخفية المستخدمة في الشبكة العصبونية لتحسين مكافاة الروبوت حيث اظهرت المحاكاة انه يمكن بزياده عدد الطبقات الخفية للشبكة العصبونية العميقة المستخدمة وضبط بعض المعاملات العليا فيها زياده مكافاة الروبوت وبالتالي الحصول على افضل مسار لتحقيق الهدف.
|
---|---|
ISSN: | 1999-7302 2789-6854 |