The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere

<p>We use a combination of spaceborne instruments to study the unprecedented stratospheric plume after the Tonga eruption of 15 January 2022. The aerosol plume was initially formed of two clouds at 30 and 28 <span class="inline-formula">km</span>, mostly composed of submi...

Full description

Bibliographic Details
Main Authors: B. Legras, C. Duchamp, P. Sellitto, A. Podglajen, E. Carboni, R. Siddans, J.-U. Grooß, S. Khaykin, F. Ploeger
Format: Article
Language:English
Published: Copernicus Publications 2022-11-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/22/14957/2022/acp-22-14957-2022.pdf
_version_ 1811179789520732160
author B. Legras
C. Duchamp
P. Sellitto
P. Sellitto
A. Podglajen
E. Carboni
R. Siddans
J.-U. Grooß
S. Khaykin
F. Ploeger
author_facet B. Legras
C. Duchamp
P. Sellitto
P. Sellitto
A. Podglajen
E. Carboni
R. Siddans
J.-U. Grooß
S. Khaykin
F. Ploeger
author_sort B. Legras
collection DOAJ
description <p>We use a combination of spaceborne instruments to study the unprecedented stratospheric plume after the Tonga eruption of 15 January 2022. The aerosol plume was initially formed of two clouds at 30 and 28 <span class="inline-formula">km</span>, mostly composed of submicron-sized sulfate particles, without ash, which is washed out within the first day following the eruption. The large amount of injected water vapour led to a fast conversion of <span class="inline-formula">SO<sub>2</sub></span> to sulfate aerosols and induced a descent of the plume to 24–26 <span class="inline-formula">km</span> over the first 3 weeks by radiative cooling. Whereas <span class="inline-formula">SO<sub>2</sub></span> returned to background levels by the end of January, volcanic sulfates and water still persisted after 6 months, mainly confined between 35<span class="inline-formula"><sup>∘</sup></span> S and 20<span class="inline-formula"><sup>∘</sup></span> N until June due to the zonal symmetry of the summer stratospheric circulation at 22–26 <span class="inline-formula">km</span>. Sulfate particles, undergoing hygroscopic growth and coagulation, sediment and gradually separate from the moisture anomaly entrained in the ascending branch Brewer–Dobson circulation. Sulfate aerosol optical depths derived from the IASI (Infrared Atmospheric Sounding Interferometer) infrared sounder show that during the first 2 months, the aerosol plume was not simply diluted and dispersed passively but rather organized in concentrated patches. Space-borne lidar winds suggest that those structures, generated by shear-induced instabilities, are associated with vorticity anomalies that may have enhanced the duration and impact of the plume.</p>
first_indexed 2024-04-11T06:40:35Z
format Article
id doaj.art-8574716f65924e65b633f47243fddee8
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-04-11T06:40:35Z
publishDate 2022-11-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-8574716f65924e65b633f47243fddee82022-12-22T04:39:34ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242022-11-0122149571497010.5194/acp-22-14957-2022The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphereB. Legras0C. Duchamp1P. Sellitto2P. Sellitto3A. Podglajen4E. Carboni5R. Siddans6J.-U. Grooß7S. Khaykin8F. Ploeger9Laboratoire de Météorologie Dynamique (LMD-IPSL), UMR CNRS 8539, ENS-PSL, École Polytechnique, Sorbonne Université, Institut Pierre Simon Laplace, Paris, FranceLaboratoire de Météorologie Dynamique (LMD-IPSL), UMR CNRS 8539, ENS-PSL, École Polytechnique, Sorbonne Université, Institut Pierre Simon Laplace, Paris, FranceUniv. Paris Est Créteil and Université de Paris Cité, CNRS, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA-IPSL), Institut Pierre-Simon Laplace, Créteil, FranceIstituto Nazionale di Geofisica e Vulcanologia (INGV), Osservatorio Etneo (OE), Catania, ItalyLaboratoire de Météorologie Dynamique (LMD-IPSL), UMR CNRS 8539, ENS-PSL, École Polytechnique, Sorbonne Université, Institut Pierre Simon Laplace, Paris, FranceUK Research and Innovation, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, UKUK Research and Innovation, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, UKInstitute for Energy and Climate Research: Stratosphere (IEK–7), Forschungszentrum Jülich, Jülich, GermanyLaboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS-IPSL), UMR CNRS 8190, Institut Pierre Simon Laplace, Sorbonne Univ./UVSQ, Guyancourt, FranceInstitute for Energy and Climate Research: Stratosphere (IEK–7), Forschungszentrum Jülich, Jülich, Germany<p>We use a combination of spaceborne instruments to study the unprecedented stratospheric plume after the Tonga eruption of 15 January 2022. The aerosol plume was initially formed of two clouds at 30 and 28 <span class="inline-formula">km</span>, mostly composed of submicron-sized sulfate particles, without ash, which is washed out within the first day following the eruption. The large amount of injected water vapour led to a fast conversion of <span class="inline-formula">SO<sub>2</sub></span> to sulfate aerosols and induced a descent of the plume to 24–26 <span class="inline-formula">km</span> over the first 3 weeks by radiative cooling. Whereas <span class="inline-formula">SO<sub>2</sub></span> returned to background levels by the end of January, volcanic sulfates and water still persisted after 6 months, mainly confined between 35<span class="inline-formula"><sup>∘</sup></span> S and 20<span class="inline-formula"><sup>∘</sup></span> N until June due to the zonal symmetry of the summer stratospheric circulation at 22–26 <span class="inline-formula">km</span>. Sulfate particles, undergoing hygroscopic growth and coagulation, sediment and gradually separate from the moisture anomaly entrained in the ascending branch Brewer–Dobson circulation. Sulfate aerosol optical depths derived from the IASI (Infrared Atmospheric Sounding Interferometer) infrared sounder show that during the first 2 months, the aerosol plume was not simply diluted and dispersed passively but rather organized in concentrated patches. Space-borne lidar winds suggest that those structures, generated by shear-induced instabilities, are associated with vorticity anomalies that may have enhanced the duration and impact of the plume.</p>https://acp.copernicus.org/articles/22/14957/2022/acp-22-14957-2022.pdf
spellingShingle B. Legras
C. Duchamp
P. Sellitto
P. Sellitto
A. Podglajen
E. Carboni
R. Siddans
J.-U. Grooß
S. Khaykin
F. Ploeger
The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere
Atmospheric Chemistry and Physics
title The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere
title_full The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere
title_fullStr The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere
title_full_unstemmed The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere
title_short The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere
title_sort evolution and dynamics of the hunga tonga hunga ha apai sulfate aerosol plume in the stratosphere
url https://acp.copernicus.org/articles/22/14957/2022/acp-22-14957-2022.pdf
work_keys_str_mv AT blegras theevolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere
AT cduchamp theevolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere
AT psellitto theevolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere
AT psellitto theevolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere
AT apodglajen theevolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere
AT ecarboni theevolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere
AT rsiddans theevolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere
AT jugrooß theevolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere
AT skhaykin theevolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere
AT fploeger theevolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere
AT blegras evolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere
AT cduchamp evolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere
AT psellitto evolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere
AT psellitto evolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere
AT apodglajen evolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere
AT ecarboni evolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere
AT rsiddans evolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere
AT jugrooß evolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere
AT skhaykin evolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere
AT fploeger evolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere