The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere
<p>We use a combination of spaceborne instruments to study the unprecedented stratospheric plume after the Tonga eruption of 15 January 2022. The aerosol plume was initially formed of two clouds at 30 and 28 <span class="inline-formula">km</span>, mostly composed of submi...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2022-11-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/22/14957/2022/acp-22-14957-2022.pdf |
_version_ | 1811179789520732160 |
---|---|
author | B. Legras C. Duchamp P. Sellitto P. Sellitto A. Podglajen E. Carboni R. Siddans J.-U. Grooß S. Khaykin F. Ploeger |
author_facet | B. Legras C. Duchamp P. Sellitto P. Sellitto A. Podglajen E. Carboni R. Siddans J.-U. Grooß S. Khaykin F. Ploeger |
author_sort | B. Legras |
collection | DOAJ |
description | <p>We use a combination of spaceborne instruments to study the unprecedented stratospheric plume after the Tonga eruption of 15 January 2022.
The aerosol plume was initially formed of two clouds at 30 and 28 <span class="inline-formula">km</span>, mostly composed of submicron-sized sulfate particles, without ash, which is washed out within the first day following the eruption.
The large amount of injected water vapour led to a fast conversion of <span class="inline-formula">SO<sub>2</sub></span> to sulfate aerosols and induced a descent of the plume to 24–26 <span class="inline-formula">km</span> over the first 3 weeks by radiative cooling.
Whereas <span class="inline-formula">SO<sub>2</sub></span> returned to background levels by the end of January, volcanic sulfates and water still persisted after 6 months, mainly confined between 35<span class="inline-formula"><sup>∘</sup></span> S and 20<span class="inline-formula"><sup>∘</sup></span> N until June due to the zonal symmetry of the summer stratospheric circulation at 22–26 <span class="inline-formula">km</span>.
Sulfate particles, undergoing hygroscopic growth and coagulation, sediment and gradually separate from the moisture anomaly entrained in the ascending branch Brewer–Dobson circulation.
Sulfate aerosol optical depths derived from the IASI (Infrared Atmospheric Sounding Interferometer) infrared sounder show that during the first 2 months, the aerosol plume was not simply diluted and dispersed passively but rather organized in concentrated patches. Space-borne lidar winds suggest that those structures, generated by shear-induced instabilities, are associated with vorticity anomalies that may have enhanced the duration and impact of the plume.</p> |
first_indexed | 2024-04-11T06:40:35Z |
format | Article |
id | doaj.art-8574716f65924e65b633f47243fddee8 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-04-11T06:40:35Z |
publishDate | 2022-11-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-8574716f65924e65b633f47243fddee82022-12-22T04:39:34ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242022-11-0122149571497010.5194/acp-22-14957-2022The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphereB. Legras0C. Duchamp1P. Sellitto2P. Sellitto3A. Podglajen4E. Carboni5R. Siddans6J.-U. Grooß7S. Khaykin8F. Ploeger9Laboratoire de Météorologie Dynamique (LMD-IPSL), UMR CNRS 8539, ENS-PSL, École Polytechnique, Sorbonne Université, Institut Pierre Simon Laplace, Paris, FranceLaboratoire de Météorologie Dynamique (LMD-IPSL), UMR CNRS 8539, ENS-PSL, École Polytechnique, Sorbonne Université, Institut Pierre Simon Laplace, Paris, FranceUniv. Paris Est Créteil and Université de Paris Cité, CNRS, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA-IPSL), Institut Pierre-Simon Laplace, Créteil, FranceIstituto Nazionale di Geofisica e Vulcanologia (INGV), Osservatorio Etneo (OE), Catania, ItalyLaboratoire de Météorologie Dynamique (LMD-IPSL), UMR CNRS 8539, ENS-PSL, École Polytechnique, Sorbonne Université, Institut Pierre Simon Laplace, Paris, FranceUK Research and Innovation, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, UKUK Research and Innovation, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, UKInstitute for Energy and Climate Research: Stratosphere (IEK–7), Forschungszentrum Jülich, Jülich, GermanyLaboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS-IPSL), UMR CNRS 8190, Institut Pierre Simon Laplace, Sorbonne Univ./UVSQ, Guyancourt, FranceInstitute for Energy and Climate Research: Stratosphere (IEK–7), Forschungszentrum Jülich, Jülich, Germany<p>We use a combination of spaceborne instruments to study the unprecedented stratospheric plume after the Tonga eruption of 15 January 2022. The aerosol plume was initially formed of two clouds at 30 and 28 <span class="inline-formula">km</span>, mostly composed of submicron-sized sulfate particles, without ash, which is washed out within the first day following the eruption. The large amount of injected water vapour led to a fast conversion of <span class="inline-formula">SO<sub>2</sub></span> to sulfate aerosols and induced a descent of the plume to 24–26 <span class="inline-formula">km</span> over the first 3 weeks by radiative cooling. Whereas <span class="inline-formula">SO<sub>2</sub></span> returned to background levels by the end of January, volcanic sulfates and water still persisted after 6 months, mainly confined between 35<span class="inline-formula"><sup>∘</sup></span> S and 20<span class="inline-formula"><sup>∘</sup></span> N until June due to the zonal symmetry of the summer stratospheric circulation at 22–26 <span class="inline-formula">km</span>. Sulfate particles, undergoing hygroscopic growth and coagulation, sediment and gradually separate from the moisture anomaly entrained in the ascending branch Brewer–Dobson circulation. Sulfate aerosol optical depths derived from the IASI (Infrared Atmospheric Sounding Interferometer) infrared sounder show that during the first 2 months, the aerosol plume was not simply diluted and dispersed passively but rather organized in concentrated patches. Space-borne lidar winds suggest that those structures, generated by shear-induced instabilities, are associated with vorticity anomalies that may have enhanced the duration and impact of the plume.</p>https://acp.copernicus.org/articles/22/14957/2022/acp-22-14957-2022.pdf |
spellingShingle | B. Legras C. Duchamp P. Sellitto P. Sellitto A. Podglajen E. Carboni R. Siddans J.-U. Grooß S. Khaykin F. Ploeger The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere Atmospheric Chemistry and Physics |
title | The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere |
title_full | The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere |
title_fullStr | The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere |
title_full_unstemmed | The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere |
title_short | The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere |
title_sort | evolution and dynamics of the hunga tonga hunga ha apai sulfate aerosol plume in the stratosphere |
url | https://acp.copernicus.org/articles/22/14957/2022/acp-22-14957-2022.pdf |
work_keys_str_mv | AT blegras theevolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere AT cduchamp theevolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere AT psellitto theevolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere AT psellitto theevolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere AT apodglajen theevolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere AT ecarboni theevolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere AT rsiddans theevolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere AT jugrooß theevolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere AT skhaykin theevolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere AT fploeger theevolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere AT blegras evolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere AT cduchamp evolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere AT psellitto evolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere AT psellitto evolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere AT apodglajen evolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere AT ecarboni evolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere AT rsiddans evolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere AT jugrooß evolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere AT skhaykin evolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere AT fploeger evolutionanddynamicsofthehungatongahungahaapaisulfateaerosolplumeinthestratosphere |