Avoiding inferior clusterings with misspecified Gaussian mixture models

Abstract Clustering is a fundamental tool for exploratory data analysis, and is ubiquitous across scientific disciplines. Gaussian Mixture Model (GMM) is a popular probabilistic and interpretable model for clustering. In many practical settings, the true data distribution, which is unknown, may be n...

Full description

Bibliographic Details
Main Authors: Siva Rajesh Kasa, Vaibhav Rajan
Format: Article
Language:English
Published: Nature Portfolio 2023-11-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-023-44608-3
Description
Summary:Abstract Clustering is a fundamental tool for exploratory data analysis, and is ubiquitous across scientific disciplines. Gaussian Mixture Model (GMM) is a popular probabilistic and interpretable model for clustering. In many practical settings, the true data distribution, which is unknown, may be non-Gaussian and may be contaminated by noise or outliers. In such cases, clustering may still be done with a misspecified GMM. However, this may lead to incorrect classification of the underlying subpopulations. In this paper, we identify and characterize the problem of inferior clustering solutions. Similar to well-known spurious solutions, these inferior solutions have high likelihood and poor cluster interpretation; however, they differ from spurious solutions in other characteristics, such as asymmetry in the fitted components. We theoretically analyze this asymmetry and its relation to misspecification. We propose a new penalty term that is designed to avoid both inferior and spurious solutions. Using this penalty term, we develop a new model selection criterion and a new GMM-based clustering algorithm, SIA. We empirically demonstrate that, in cases of misspecification, SIA avoids inferior solutions and outperforms previous GMM-based clustering methods.
ISSN:2045-2322