Fish Recognition in the Underwater Environment Using an Improved ArcFace Loss for Precision Aquaculture

Accurate fish individual recognition is one of the critical technologies for large-scale fishery farming when trying to achieve accurate, green farming and sustainable development. It is an essential link for aquaculture to move toward automation and intelligence. However, existing fish individual d...

Full description

Bibliographic Details
Main Authors: Liang Liu, Junfeng Wu, Tao Zheng, Haiyan Zhao, Han Kong, Boyu Qu, Hong Yu
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Fishes
Subjects:
Online Access:https://www.mdpi.com/2410-3888/8/12/591
Description
Summary:Accurate fish individual recognition is one of the critical technologies for large-scale fishery farming when trying to achieve accurate, green farming and sustainable development. It is an essential link for aquaculture to move toward automation and intelligence. However, existing fish individual data collection methods cannot cope with the interference of light, blur, and pose in the natural underwater environment, which makes the captured fish individual images of poor quality. These low-quality images can cause significant interference with the training of recognition networks. In order to solve the above problems, this paper proposes an underwater fish individual recognition method (FishFace) that combines data quality assessment and loss weighting. First, we introduce the Gem pooing and quality evaluation module, which is based on EfficientNet. This module is an improved fish recognition network that can evaluate the quality of fish images well, and it does not need additional labels; second, we propose a new loss function, FishFace Loss, which will weigh the loss according to the quality of the image so that the model focuses more on recognizable fish images, and less on images that are difficult to recognize. Finally, we collect a dataset for fish individual recognition (WideFish), which contains and annotates 5000 images of 300 fish. The experimental results show that, compared with the state-of-the-art individual recognition methods, Rank1 accuracy is improved by 2.60% and 3.12% on the public dataset DlouFish and the proposed WideFish dataset, respectively.
ISSN:2410-3888