Nonexistence of asymptotically free solutions to nonlinear Schrodinger systems

We consider the nonlinear Schrodinger systems $$displaylines{ -ipartial _tu_1+frac{1}{2}Delta u_1=F( u_1,u_2), cr ipartial _tu_2+frac{1}{2}Delta u_2=F( u_1,u_2) }$$ in n space dimensions, where F is a p-th order local or nonlocal nonlinearity smooth up to order p, with $1<pleq 1+frac{2}...

Full description

Bibliographic Details
Main Authors: Nakao Hayashi, Chunhua Li, Pavel I. Naumkin
Format: Article
Language:English
Published: Texas State University 2012-09-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2012/162/abstr.html
_version_ 1818178066669633536
author Nakao Hayashi
Chunhua Li
Pavel I. Naumkin
author_facet Nakao Hayashi
Chunhua Li
Pavel I. Naumkin
author_sort Nakao Hayashi
collection DOAJ
description We consider the nonlinear Schrodinger systems $$displaylines{ -ipartial _tu_1+frac{1}{2}Delta u_1=F( u_1,u_2), cr ipartial _tu_2+frac{1}{2}Delta u_2=F( u_1,u_2) }$$ in n space dimensions, where F is a p-th order local or nonlocal nonlinearity smooth up to order p, with $1<pleq 1+frac{2}{n}$ for $ngeq 2$ and $1<pleq 2$ for n=1. These systems are related to higher order nonlinear dispersive wave equations. We prove the non existence of asymptotically free solutions in the critical and sub-critical cases.
first_indexed 2024-12-11T20:42:04Z
format Article
id doaj.art-858a06238f7040b1a189c23a59bd7f2d
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-11T20:42:04Z
publishDate 2012-09-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-858a06238f7040b1a189c23a59bd7f2d2022-12-22T00:51:28ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912012-09-012012162,114Nonexistence of asymptotically free solutions to nonlinear Schrodinger systemsNakao HayashiChunhua LiPavel I. NaumkinWe consider the nonlinear Schrodinger systems $$displaylines{ -ipartial _tu_1+frac{1}{2}Delta u_1=F( u_1,u_2), cr ipartial _tu_2+frac{1}{2}Delta u_2=F( u_1,u_2) }$$ in n space dimensions, where F is a p-th order local or nonlocal nonlinearity smooth up to order p, with $1<pleq 1+frac{2}{n}$ for $ngeq 2$ and $1<pleq 2$ for n=1. These systems are related to higher order nonlinear dispersive wave equations. We prove the non existence of asymptotically free solutions in the critical and sub-critical cases.http://ejde.math.txstate.edu/Volumes/2012/162/abstr.htmlDispersive nonlinear wavesasymptotically free solutions
spellingShingle Nakao Hayashi
Chunhua Li
Pavel I. Naumkin
Nonexistence of asymptotically free solutions to nonlinear Schrodinger systems
Electronic Journal of Differential Equations
Dispersive nonlinear waves
asymptotically free solutions
title Nonexistence of asymptotically free solutions to nonlinear Schrodinger systems
title_full Nonexistence of asymptotically free solutions to nonlinear Schrodinger systems
title_fullStr Nonexistence of asymptotically free solutions to nonlinear Schrodinger systems
title_full_unstemmed Nonexistence of asymptotically free solutions to nonlinear Schrodinger systems
title_short Nonexistence of asymptotically free solutions to nonlinear Schrodinger systems
title_sort nonexistence of asymptotically free solutions to nonlinear schrodinger systems
topic Dispersive nonlinear waves
asymptotically free solutions
url http://ejde.math.txstate.edu/Volumes/2012/162/abstr.html
work_keys_str_mv AT nakaohayashi nonexistenceofasymptoticallyfreesolutionstononlinearschrodingersystems
AT chunhuali nonexistenceofasymptoticallyfreesolutionstononlinearschrodingersystems
AT pavelinaumkin nonexistenceofasymptoticallyfreesolutionstononlinearschrodingersystems