Kac-Moody and Virasoro characters from the perturbative Chern-Simons path integral

Abstract We evaluate to one loop the functional integral that computes the partition functions of Chern-Simons theories based on compact groups, using the background field method and a covariant gauge fixing. We compare our computation with the results of other, less direct methods. We find that our...

Full description

Bibliographic Details
Main Authors: Massimo Porrati, Cedric Yu
Format: Article
Language:English
Published: SpringerOpen 2019-05-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP05(2019)083
Description
Summary:Abstract We evaluate to one loop the functional integral that computes the partition functions of Chern-Simons theories based on compact groups, using the background field method and a covariant gauge fixing. We compare our computation with the results of other, less direct methods. We find that our method correctly computes the characters of irreducible representations of Kac-Moody algebras. To extend the computation to non-compact groups we need to perform an appropriate analytic continuation of the partition function of the compact group. Non-vacuum characters are found by inserting a Wilson loop in the functional integral. We then extend our method to Euclidean Anti-de Sitter pure gravity in three dimensions. The explicit computation unveils several interesting features and lessons. The most important among them is that the very definition of gravity in the first-order Chern-Simons formalism requires non-trivial analytic continuations of the gauge fields outside their original domains of definition.
ISSN:1029-8479