Reconstruction of Lamb Wave Dispersion Curves in Different Objects Using Signals Measured at Two Different Distances

The possibilities of an effective method of two adjacent signals are investigated for the evaluation of Lamb waves phase velocity dispersion in objects of different types, namely polyvinyl chloride (PVC) film and wind turbine blade (WTB). A new algorithm based on peaks of spectrum magnitude is prese...

Full description

Bibliographic Details
Main Authors: Lina Draudvilienė, Olgirdas Tumšys, Renaldas Raišutis
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/22/6990
_version_ 1797509519754919936
author Lina Draudvilienė
Olgirdas Tumšys
Renaldas Raišutis
author_facet Lina Draudvilienė
Olgirdas Tumšys
Renaldas Raišutis
author_sort Lina Draudvilienė
collection DOAJ
description The possibilities of an effective method of two adjacent signals are investigated for the evaluation of Lamb waves phase velocity dispersion in objects of different types, namely polyvinyl chloride (PVC) film and wind turbine blade (WTB). A new algorithm based on peaks of spectrum magnitude is presented and used for the comparison of the results. To use the presented method, the wavelength-dependent parameter is proposed to determine the optimal distance range, which is necessary in selecting two signals for analysis. It is determined that, in the range of 0.17–0.5 wavelength where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>δ</mi><mrow><msub><mi>c</mi><mrow><mi>p</mi><mi>h</mi></mrow></msub></mrow></msub></mrow></semantics></math></inline-formula> is not higher than 5%, it is appropriate to use in the case of an A<sub>0</sub> mode in PVC film sample. The smallest error of 1.2%, in the distance greater than 1.5 wavelengths, is obtained in the case of the S<sub>0</sub> mode. Using the method of two signals analysis for PVC sample, the phase velocity dispersion curve of the A<sub>0</sub> mode is reconstructed using selected distances <i>x</i><sub>1</sub> = 70 mm and <i>x</i><sub>2</sub> = 70.5 mm between two spatial positions of a receiving transducer with a mean relative error <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>δ</mi><mrow><msub><mi>c</mi><mrow><mi>p</mi><mi>h</mi></mrow></msub></mrow></msub><mo>=</mo><mn>2.8</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and for S<sub>0</sub> mode, <i>x</i><sub>1</sub> = 61 mm and <i>x</i><sub>2</sub> = 79.7 mm with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>δ</mi><mrow><msub><mi>c</mi><mrow><mi>p</mi><mi>h</mi></mrow></msub></mrow></msub><mo>=</mo><mn>0.99</mn><mo>%</mo></mrow></semantics></math></inline-formula>. In the case of the WTB sample, the range of 0.1–0.39 wavelength, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>δ</mi><mrow><msub><mi>c</mi><mrow><mi>p</mi><mi>h</mi></mrow></msub></mrow></msub></mrow></semantics></math></inline-formula> is not higher than 3%, is determined as the optimal distance range between two adjacent signals. The phase velocity dispersion curve of the A<sub>0</sub> mode is reconstructed in two frequency ranges: first, using selected distances <i>x</i><sub>1</sub> = 225 mm and <i>x</i><sub>2</sub> = 231 mm with mean relative error <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>δ</mi><mrow><msub><mi>c</mi><mrow><mi>p</mi><mi>h</mi></mrow></msub></mrow></msub><mo>=</mo><mn>0.3</mn><mo>%</mo></mrow></semantics></math></inline-formula>; and second, <i>x</i><sub>1</sub> = 225 mm and <i>x</i><sub>2</sub> = 237 mm with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>δ</mi><mrow><msub><mi>c</mi><mrow><mi>p</mi><mi>h</mi></mrow></msub></mrow></msub><mo>=</mo><mn>1.3</mn><mo>%</mo></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-10T05:18:55Z
format Article
id doaj.art-85b9225f0d6541459afd3248234c7b3b
institution Directory Open Access Journal
issn 1996-1944
language English
last_indexed 2024-03-10T05:18:55Z
publishDate 2021-11-01
publisher MDPI AG
record_format Article
series Materials
spelling doaj.art-85b9225f0d6541459afd3248234c7b3b2023-11-23T00:11:59ZengMDPI AGMaterials1996-19442021-11-011422699010.3390/ma14226990Reconstruction of Lamb Wave Dispersion Curves in Different Objects Using Signals Measured at Two Different DistancesLina Draudvilienė0Olgirdas Tumšys1Renaldas Raišutis2Ultrasound Research Institute, Kaunas University of Technology, K. Baršauskas St. 59, LT-51423 Kaunas, LithuaniaUltrasound Research Institute, Kaunas University of Technology, K. Baršauskas St. 59, LT-51423 Kaunas, LithuaniaUltrasound Research Institute, Kaunas University of Technology, K. Baršauskas St. 59, LT-51423 Kaunas, LithuaniaThe possibilities of an effective method of two adjacent signals are investigated for the evaluation of Lamb waves phase velocity dispersion in objects of different types, namely polyvinyl chloride (PVC) film and wind turbine blade (WTB). A new algorithm based on peaks of spectrum magnitude is presented and used for the comparison of the results. To use the presented method, the wavelength-dependent parameter is proposed to determine the optimal distance range, which is necessary in selecting two signals for analysis. It is determined that, in the range of 0.17–0.5 wavelength where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>δ</mi><mrow><msub><mi>c</mi><mrow><mi>p</mi><mi>h</mi></mrow></msub></mrow></msub></mrow></semantics></math></inline-formula> is not higher than 5%, it is appropriate to use in the case of an A<sub>0</sub> mode in PVC film sample. The smallest error of 1.2%, in the distance greater than 1.5 wavelengths, is obtained in the case of the S<sub>0</sub> mode. Using the method of two signals analysis for PVC sample, the phase velocity dispersion curve of the A<sub>0</sub> mode is reconstructed using selected distances <i>x</i><sub>1</sub> = 70 mm and <i>x</i><sub>2</sub> = 70.5 mm between two spatial positions of a receiving transducer with a mean relative error <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>δ</mi><mrow><msub><mi>c</mi><mrow><mi>p</mi><mi>h</mi></mrow></msub></mrow></msub><mo>=</mo><mn>2.8</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and for S<sub>0</sub> mode, <i>x</i><sub>1</sub> = 61 mm and <i>x</i><sub>2</sub> = 79.7 mm with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>δ</mi><mrow><msub><mi>c</mi><mrow><mi>p</mi><mi>h</mi></mrow></msub></mrow></msub><mo>=</mo><mn>0.99</mn><mo>%</mo></mrow></semantics></math></inline-formula>. In the case of the WTB sample, the range of 0.1–0.39 wavelength, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>δ</mi><mrow><msub><mi>c</mi><mrow><mi>p</mi><mi>h</mi></mrow></msub></mrow></msub></mrow></semantics></math></inline-formula> is not higher than 3%, is determined as the optimal distance range between two adjacent signals. The phase velocity dispersion curve of the A<sub>0</sub> mode is reconstructed in two frequency ranges: first, using selected distances <i>x</i><sub>1</sub> = 225 mm and <i>x</i><sub>2</sub> = 231 mm with mean relative error <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>δ</mi><mrow><msub><mi>c</mi><mrow><mi>p</mi><mi>h</mi></mrow></msub></mrow></msub><mo>=</mo><mn>0.3</mn><mo>%</mo></mrow></semantics></math></inline-formula>; and second, <i>x</i><sub>1</sub> = 225 mm and <i>x</i><sub>2</sub> = 237 mm with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>δ</mi><mrow><msub><mi>c</mi><mrow><mi>p</mi><mi>h</mi></mrow></msub></mrow></msub><mo>=</mo><mn>1.3</mn><mo>%</mo></mrow></semantics></math></inline-formula>.https://www.mdpi.com/1996-1944/14/22/6990ultrasonic Lamb wavenon-destructive testingnon-homogeneous materialsignal processingLamb wave phase velocitydispersion curve reconstruction
spellingShingle Lina Draudvilienė
Olgirdas Tumšys
Renaldas Raišutis
Reconstruction of Lamb Wave Dispersion Curves in Different Objects Using Signals Measured at Two Different Distances
Materials
ultrasonic Lamb wave
non-destructive testing
non-homogeneous material
signal processing
Lamb wave phase velocity
dispersion curve reconstruction
title Reconstruction of Lamb Wave Dispersion Curves in Different Objects Using Signals Measured at Two Different Distances
title_full Reconstruction of Lamb Wave Dispersion Curves in Different Objects Using Signals Measured at Two Different Distances
title_fullStr Reconstruction of Lamb Wave Dispersion Curves in Different Objects Using Signals Measured at Two Different Distances
title_full_unstemmed Reconstruction of Lamb Wave Dispersion Curves in Different Objects Using Signals Measured at Two Different Distances
title_short Reconstruction of Lamb Wave Dispersion Curves in Different Objects Using Signals Measured at Two Different Distances
title_sort reconstruction of lamb wave dispersion curves in different objects using signals measured at two different distances
topic ultrasonic Lamb wave
non-destructive testing
non-homogeneous material
signal processing
Lamb wave phase velocity
dispersion curve reconstruction
url https://www.mdpi.com/1996-1944/14/22/6990
work_keys_str_mv AT linadraudviliene reconstructionoflambwavedispersioncurvesindifferentobjectsusingsignalsmeasuredattwodifferentdistances
AT olgirdastumsys reconstructionoflambwavedispersioncurvesindifferentobjectsusingsignalsmeasuredattwodifferentdistances
AT renaldasraisutis reconstructionoflambwavedispersioncurvesindifferentobjectsusingsignalsmeasuredattwodifferentdistances