The form of the spectral function associated with Sturm-Liouville problems for small values of the spectral parameter

We study the linear second-order differential equation $$ -y'' + q(x) y = lambda y $$ where, amongst other conditions, $q in L^1[0,infty)$. We obtain a convergent series expansion for the spectral function which is valid for small values of $lambda$. We also derive an asymptotic rep...

Full description

Bibliographic Details
Main Author: B. J. Harris
Format: Article
Language:English
Published: Texas State University 2013-01-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2013/17/abstr.html
_version_ 1818365833226747904
author B. J. Harris
author_facet B. J. Harris
author_sort B. J. Harris
collection DOAJ
description We study the linear second-order differential equation $$ -y'' + q(x) y = lambda y $$ where, amongst other conditions, $q in L^1[0,infty)$. We obtain a convergent series expansion for the spectral function which is valid for small values of $lambda$. We also derive an asymptotic representation.
first_indexed 2024-12-13T22:26:32Z
format Article
id doaj.art-85d270b6263f41e8b002dde2c848cd5a
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-13T22:26:32Z
publishDate 2013-01-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-85d270b6263f41e8b002dde2c848cd5a2022-12-21T23:29:12ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912013-01-01201317,15The form of the spectral function associated with Sturm-Liouville problems for small values of the spectral parameterB. J. HarrisWe study the linear second-order differential equation $$ -y'' + q(x) y = lambda y $$ where, amongst other conditions, $q in L^1[0,infty)$. We obtain a convergent series expansion for the spectral function which is valid for small values of $lambda$. We also derive an asymptotic representation.http://ejde.math.txstate.edu/Volumes/2013/17/abstr.htmlSturm Liouville equationspectral functionsmall eigenparameter
spellingShingle B. J. Harris
The form of the spectral function associated with Sturm-Liouville problems for small values of the spectral parameter
Electronic Journal of Differential Equations
Sturm Liouville equation
spectral function
small eigenparameter
title The form of the spectral function associated with Sturm-Liouville problems for small values of the spectral parameter
title_full The form of the spectral function associated with Sturm-Liouville problems for small values of the spectral parameter
title_fullStr The form of the spectral function associated with Sturm-Liouville problems for small values of the spectral parameter
title_full_unstemmed The form of the spectral function associated with Sturm-Liouville problems for small values of the spectral parameter
title_short The form of the spectral function associated with Sturm-Liouville problems for small values of the spectral parameter
title_sort form of the spectral function associated with sturm liouville problems for small values of the spectral parameter
topic Sturm Liouville equation
spectral function
small eigenparameter
url http://ejde.math.txstate.edu/Volumes/2013/17/abstr.html
work_keys_str_mv AT bjharris theformofthespectralfunctionassociatedwithsturmliouvilleproblemsforsmallvaluesofthespectralparameter
AT bjharris formofthespectralfunctionassociatedwithsturmliouvilleproblemsforsmallvaluesofthespectralparameter