The form of the spectral function associated with Sturm-Liouville problems for small values of the spectral parameter
We study the linear second-order differential equation $$ -y'' + q(x) y = lambda y $$ where, amongst other conditions, $q in L^1[0,infty)$. We obtain a convergent series expansion for the spectral function which is valid for small values of $lambda$. We also derive an asymptotic rep...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2013-01-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2013/17/abstr.html |
_version_ | 1818365833226747904 |
---|---|
author | B. J. Harris |
author_facet | B. J. Harris |
author_sort | B. J. Harris |
collection | DOAJ |
description | We study the linear second-order differential equation $$ -y'' + q(x) y = lambda y $$ where, amongst other conditions, $q in L^1[0,infty)$. We obtain a convergent series expansion for the spectral function which is valid for small values of $lambda$. We also derive an asymptotic representation. |
first_indexed | 2024-12-13T22:26:32Z |
format | Article |
id | doaj.art-85d270b6263f41e8b002dde2c848cd5a |
institution | Directory Open Access Journal |
issn | 1072-6691 |
language | English |
last_indexed | 2024-12-13T22:26:32Z |
publishDate | 2013-01-01 |
publisher | Texas State University |
record_format | Article |
series | Electronic Journal of Differential Equations |
spelling | doaj.art-85d270b6263f41e8b002dde2c848cd5a2022-12-21T23:29:12ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912013-01-01201317,15The form of the spectral function associated with Sturm-Liouville problems for small values of the spectral parameterB. J. HarrisWe study the linear second-order differential equation $$ -y'' + q(x) y = lambda y $$ where, amongst other conditions, $q in L^1[0,infty)$. We obtain a convergent series expansion for the spectral function which is valid for small values of $lambda$. We also derive an asymptotic representation.http://ejde.math.txstate.edu/Volumes/2013/17/abstr.htmlSturm Liouville equationspectral functionsmall eigenparameter |
spellingShingle | B. J. Harris The form of the spectral function associated with Sturm-Liouville problems for small values of the spectral parameter Electronic Journal of Differential Equations Sturm Liouville equation spectral function small eigenparameter |
title | The form of the spectral function associated with Sturm-Liouville problems for small values of the spectral parameter |
title_full | The form of the spectral function associated with Sturm-Liouville problems for small values of the spectral parameter |
title_fullStr | The form of the spectral function associated with Sturm-Liouville problems for small values of the spectral parameter |
title_full_unstemmed | The form of the spectral function associated with Sturm-Liouville problems for small values of the spectral parameter |
title_short | The form of the spectral function associated with Sturm-Liouville problems for small values of the spectral parameter |
title_sort | form of the spectral function associated with sturm liouville problems for small values of the spectral parameter |
topic | Sturm Liouville equation spectral function small eigenparameter |
url | http://ejde.math.txstate.edu/Volumes/2013/17/abstr.html |
work_keys_str_mv | AT bjharris theformofthespectralfunctionassociatedwithsturmliouvilleproblemsforsmallvaluesofthespectralparameter AT bjharris formofthespectralfunctionassociatedwithsturmliouvilleproblemsforsmallvaluesofthespectralparameter |