Utilization of L-glutamate as a preferred or sole nutrient in Pseudomonas aeruginosa PAO1 depends on genes encoding for the enhancer-binding protein AauR, the sigma factor RpoN and the transporter complex AatJQMP

Abstract Background Glutamate and aspartate are preferred nutrients for a variety of microorganisms. In the case for many Pseudomonas spp., utilization of these amino acids is believed to be dependent on a transporter complex comprised of a periplasmic-solute binding protein (AatJ), two permease dom...

Full description

Bibliographic Details
Main Authors: Benjamin R. Lundgren, Joseph M. Shoytush, Ryan A. Scheel, Safreen Sain, Zaara Sarwar, Christopher T. Nomura
Format: Article
Language:English
Published: BMC 2021-03-01
Series:BMC Microbiology
Subjects:
Online Access:https://doi.org/10.1186/s12866-021-02145-x
_version_ 1819119719599308800
author Benjamin R. Lundgren
Joseph M. Shoytush
Ryan A. Scheel
Safreen Sain
Zaara Sarwar
Christopher T. Nomura
author_facet Benjamin R. Lundgren
Joseph M. Shoytush
Ryan A. Scheel
Safreen Sain
Zaara Sarwar
Christopher T. Nomura
author_sort Benjamin R. Lundgren
collection DOAJ
description Abstract Background Glutamate and aspartate are preferred nutrients for a variety of microorganisms. In the case for many Pseudomonas spp., utilization of these amino acids is believed to be dependent on a transporter complex comprised of a periplasmic-solute binding protein (AatJ), two permease domains (AatQM) and an ATP-binding component (AatP). Notably, expression of this transporter complex is hypothesized to be regulated at the transcriptional level by the enhancer-binding protein AauR and the alternative sigma factor RpoN. The purpose of the current study was to determine the biological significance of the putative aatJ-aatQMP operon and its regulatory aauR and rpoN genes in the utilization of L-glutamate, L-glutamine, L-aspartate and L-asparagine in Pseudomonas aeruginosa PAO1. Results Deletion of the aatJ-aatQMP, aauR or rpoN genes did not affect the growth of P. aeruginosa PAO1 on L-glutamate, L-glutamine, L-aspartate and L-asparagine equally. Instead, only growth on L-glutamate as the sole carbon source was abolished with the deletion of any one of these genes. Interestingly, growth of the aauR mutant on L-glutamate was readily restored via plasmid-based expression of the aatQMP genes, suggesting that it is the function of AatQMP (and not AatJ) that is limiting in the absence of the aauR gene. Subsequent analysis of beta-galactosidase reporters revealed that both aatJ and aatQ were induced in response to L-glutamate, L-glutamine, L-aspartate or L-asparagine in a manner dependent on the aauR and rpoN genes. In addition, both aatJ and aatQ were expressed at reduced levels in the absence of the inducing-amino acids and the regulatory aauR and rpoN genes. The expression of the aatJ-aatQMP genes is, therefore, multifaceted. Lastly, the expression levels of aatJ were significantly higher (> 5 fold) than that of aatQ under all tested conditions. Conclusions The primary function of AauR in P. aeruginosa PAO1 is to activate expression of the aatJ-aatQMP genes in response to exogenous acidic amino acids and their amide derivatives. Importantly, it is the AauR-RpoN mediated induction of the aatQMP genes that is the pivotal factor enabling P. aeruginosa PAO1 to effectively utilize or consume L-glutamate as a sole or preferred nutrient.
first_indexed 2024-12-22T06:09:15Z
format Article
id doaj.art-85d6afe3166a4386a14ba3f2049b6221
institution Directory Open Access Journal
issn 1471-2180
language English
last_indexed 2024-12-22T06:09:15Z
publishDate 2021-03-01
publisher BMC
record_format Article
series BMC Microbiology
spelling doaj.art-85d6afe3166a4386a14ba3f2049b62212022-12-21T18:36:18ZengBMCBMC Microbiology1471-21802021-03-0121112010.1186/s12866-021-02145-xUtilization of L-glutamate as a preferred or sole nutrient in Pseudomonas aeruginosa PAO1 depends on genes encoding for the enhancer-binding protein AauR, the sigma factor RpoN and the transporter complex AatJQMPBenjamin R. Lundgren0Joseph M. Shoytush1Ryan A. Scheel2Safreen Sain3Zaara Sarwar4Christopher T. Nomura5Department of Chemistry, State University of New York - College of Environmental Science and Forestry, SyracuseDepartment of Chemistry, State University of New York - College of Environmental Science and Forestry, SyracuseDepartment of Chemistry, State University of New York - College of Environmental Science and Forestry, SyracuseDepartment of Biology, The College of New JerseyDepartment of Biology, The College of New JerseyDepartment of Biological Sciences, University of IdahoAbstract Background Glutamate and aspartate are preferred nutrients for a variety of microorganisms. In the case for many Pseudomonas spp., utilization of these amino acids is believed to be dependent on a transporter complex comprised of a periplasmic-solute binding protein (AatJ), two permease domains (AatQM) and an ATP-binding component (AatP). Notably, expression of this transporter complex is hypothesized to be regulated at the transcriptional level by the enhancer-binding protein AauR and the alternative sigma factor RpoN. The purpose of the current study was to determine the biological significance of the putative aatJ-aatQMP operon and its regulatory aauR and rpoN genes in the utilization of L-glutamate, L-glutamine, L-aspartate and L-asparagine in Pseudomonas aeruginosa PAO1. Results Deletion of the aatJ-aatQMP, aauR or rpoN genes did not affect the growth of P. aeruginosa PAO1 on L-glutamate, L-glutamine, L-aspartate and L-asparagine equally. Instead, only growth on L-glutamate as the sole carbon source was abolished with the deletion of any one of these genes. Interestingly, growth of the aauR mutant on L-glutamate was readily restored via plasmid-based expression of the aatQMP genes, suggesting that it is the function of AatQMP (and not AatJ) that is limiting in the absence of the aauR gene. Subsequent analysis of beta-galactosidase reporters revealed that both aatJ and aatQ were induced in response to L-glutamate, L-glutamine, L-aspartate or L-asparagine in a manner dependent on the aauR and rpoN genes. In addition, both aatJ and aatQ were expressed at reduced levels in the absence of the inducing-amino acids and the regulatory aauR and rpoN genes. The expression of the aatJ-aatQMP genes is, therefore, multifaceted. Lastly, the expression levels of aatJ were significantly higher (> 5 fold) than that of aatQ under all tested conditions. Conclusions The primary function of AauR in P. aeruginosa PAO1 is to activate expression of the aatJ-aatQMP genes in response to exogenous acidic amino acids and their amide derivatives. Importantly, it is the AauR-RpoN mediated induction of the aatQMP genes that is the pivotal factor enabling P. aeruginosa PAO1 to effectively utilize or consume L-glutamate as a sole or preferred nutrient.https://doi.org/10.1186/s12866-021-02145-xEnhancer-binding proteinAcidic amino acidsGlutamate utilizationAauRRpoNPseudomonas aeruginosa
spellingShingle Benjamin R. Lundgren
Joseph M. Shoytush
Ryan A. Scheel
Safreen Sain
Zaara Sarwar
Christopher T. Nomura
Utilization of L-glutamate as a preferred or sole nutrient in Pseudomonas aeruginosa PAO1 depends on genes encoding for the enhancer-binding protein AauR, the sigma factor RpoN and the transporter complex AatJQMP
BMC Microbiology
Enhancer-binding protein
Acidic amino acids
Glutamate utilization
AauR
RpoN
Pseudomonas aeruginosa
title Utilization of L-glutamate as a preferred or sole nutrient in Pseudomonas aeruginosa PAO1 depends on genes encoding for the enhancer-binding protein AauR, the sigma factor RpoN and the transporter complex AatJQMP
title_full Utilization of L-glutamate as a preferred or sole nutrient in Pseudomonas aeruginosa PAO1 depends on genes encoding for the enhancer-binding protein AauR, the sigma factor RpoN and the transporter complex AatJQMP
title_fullStr Utilization of L-glutamate as a preferred or sole nutrient in Pseudomonas aeruginosa PAO1 depends on genes encoding for the enhancer-binding protein AauR, the sigma factor RpoN and the transporter complex AatJQMP
title_full_unstemmed Utilization of L-glutamate as a preferred or sole nutrient in Pseudomonas aeruginosa PAO1 depends on genes encoding for the enhancer-binding protein AauR, the sigma factor RpoN and the transporter complex AatJQMP
title_short Utilization of L-glutamate as a preferred or sole nutrient in Pseudomonas aeruginosa PAO1 depends on genes encoding for the enhancer-binding protein AauR, the sigma factor RpoN and the transporter complex AatJQMP
title_sort utilization of l glutamate as a preferred or sole nutrient in pseudomonas aeruginosa pao1 depends on genes encoding for the enhancer binding protein aaur the sigma factor rpon and the transporter complex aatjqmp
topic Enhancer-binding protein
Acidic amino acids
Glutamate utilization
AauR
RpoN
Pseudomonas aeruginosa
url https://doi.org/10.1186/s12866-021-02145-x
work_keys_str_mv AT benjaminrlundgren utilizationoflglutamateasapreferredorsolenutrientinpseudomonasaeruginosapao1dependsongenesencodingfortheenhancerbindingproteinaaurthesigmafactorrponandthetransportercomplexaatjqmp
AT josephmshoytush utilizationoflglutamateasapreferredorsolenutrientinpseudomonasaeruginosapao1dependsongenesencodingfortheenhancerbindingproteinaaurthesigmafactorrponandthetransportercomplexaatjqmp
AT ryanascheel utilizationoflglutamateasapreferredorsolenutrientinpseudomonasaeruginosapao1dependsongenesencodingfortheenhancerbindingproteinaaurthesigmafactorrponandthetransportercomplexaatjqmp
AT safreensain utilizationoflglutamateasapreferredorsolenutrientinpseudomonasaeruginosapao1dependsongenesencodingfortheenhancerbindingproteinaaurthesigmafactorrponandthetransportercomplexaatjqmp
AT zaarasarwar utilizationoflglutamateasapreferredorsolenutrientinpseudomonasaeruginosapao1dependsongenesencodingfortheenhancerbindingproteinaaurthesigmafactorrponandthetransportercomplexaatjqmp
AT christophertnomura utilizationoflglutamateasapreferredorsolenutrientinpseudomonasaeruginosapao1dependsongenesencodingfortheenhancerbindingproteinaaurthesigmafactorrponandthetransportercomplexaatjqmp