Fučík spectra for vector equations

Let $L:\hbox{dom} L\subset L^2(\Omega;R^N)\rightarrow L^2(\Omega;R^N)$ be a linear operator, $\Omega$ being open and bounded in $R^M$. The aim of this paper is to study the Fu\v c\'\i k spectrum for vector problems of the form $Lu=\alpha Au^+ -\beta Au^-$, where $A$ is an $N\times N$ matrix, $\...

Full description

Bibliographic Details
Main Author: Christian Fabry
Format: Article
Language:English
Published: University of Szeged 2000-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=77
_version_ 1797830789264572416
author Christian Fabry
author_facet Christian Fabry
author_sort Christian Fabry
collection DOAJ
description Let $L:\hbox{dom} L\subset L^2(\Omega;R^N)\rightarrow L^2(\Omega;R^N)$ be a linear operator, $\Omega$ being open and bounded in $R^M$. The aim of this paper is to study the Fu\v c\'\i k spectrum for vector problems of the form $Lu=\alpha Au^+ -\beta Au^-$, where $A$ is an $N\times N$ matrix, $\alpha, \beta$ are real numbers, $u^+$ a vector defined componentwise by $(u^+)_i=\max\{u_i,0\}$, $u^-$ being defined similarly. With $\lambda^*$ an eigenvalue for the problem $Lu=\lambda Au$, we describe (locally) curves in the Fučík spectrum passing through the point $(\lambda^*,\lambda^*)$, distinguishing different cases illustrated by examples, for which Fučík curves have been computed numerically.
first_indexed 2024-04-09T13:42:47Z
format Article
id doaj.art-85ddc12466f94f46a20e6e14a15d5690
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:42:47Z
publishDate 2000-01-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-85ddc12466f94f46a20e6e14a15d56902023-05-09T07:52:56ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752000-01-012000712410.14232/ejqtde.2000.1.777Fučík spectra for vector equationsChristian Fabry0Catholic University of Louvain, BelgiumLet $L:\hbox{dom} L\subset L^2(\Omega;R^N)\rightarrow L^2(\Omega;R^N)$ be a linear operator, $\Omega$ being open and bounded in $R^M$. The aim of this paper is to study the Fu\v c\'\i k spectrum for vector problems of the form $Lu=\alpha Au^+ -\beta Au^-$, where $A$ is an $N\times N$ matrix, $\alpha, \beta$ are real numbers, $u^+$ a vector defined componentwise by $(u^+)_i=\max\{u_i,0\}$, $u^-$ being defined similarly. With $\lambda^*$ an eigenvalue for the problem $Lu=\lambda Au$, we describe (locally) curves in the Fučík spectrum passing through the point $(\lambda^*,\lambda^*)$, distinguishing different cases illustrated by examples, for which Fučík curves have been computed numerically.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=77
spellingShingle Christian Fabry
Fučík spectra for vector equations
Electronic Journal of Qualitative Theory of Differential Equations
title Fučík spectra for vector equations
title_full Fučík spectra for vector equations
title_fullStr Fučík spectra for vector equations
title_full_unstemmed Fučík spectra for vector equations
title_short Fučík spectra for vector equations
title_sort fucik spectra for vector equations
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=77
work_keys_str_mv AT christianfabry fucikspectraforvectorequations