Stable carbon and nitrogen isotopic compositions of tropical atmospheric aerosols: sources and contribution from burning of C3 and C4 plants to organic aerosols

In this paper, we report for the first time the δ13C and δ15N data for PM2.5 and PM10 aerosols collected in Tanzania during May–August 2011 together with total carbon (TC) and nitrogen (TN) contents. Mean TC concentrations were 6.5±2.1 µg m−3 in PM2.5 and 9.2±3.5 µg m−3 in PM10. δ13C of TC ranged fr...

Full description

Bibliographic Details
Main Authors: Stelyus L. Mkoma, Kimitaka Kawamura, Eri Tachibana, Pingqing Fu
Format: Article
Language:English
Published: Stockholm University Press 2014-01-01
Series:Tellus: Series B, Chemical and Physical Meteorology
Subjects:
Online Access:http://www.tellusb.net/index.php/tellusb/article/download/20176/pdf_1
Description
Summary:In this paper, we report for the first time the δ13C and δ15N data for PM2.5 and PM10 aerosols collected in Tanzania during May–August 2011 together with total carbon (TC) and nitrogen (TN) contents. Mean TC concentrations were 6.5±2.1 µg m−3 in PM2.5 and 9.2±3.5 µg m−3 in PM10. δ13C of TC ranged from −26.1 to −20.6‰ with a mean of −23.6‰ in PM2.5 and from −24.4 to −22.4‰ with a mean of −23.6‰ in PM10. We found substantially greater δ13C values in PM2.5 samples during dry season as well as strong positive correlation between levoglucosan (and nss-K+) and TC in PM2.5. These results suggest a significant contribution from burning of C4 plants to fine organic aerosol formation. TN contents showed a mean of 0.7±0.3 µg m−3 in PM2.5 and 0.8±0.2 µg m−3 in PM10. δ15N ranged from +13.4 to +22.1‰ with a mean of +16.2±2.7‰ in PM2.5 and +10.4 to +18.7‰ with a mean of +13.7±2.2‰ in PM10. δ15N showed higher ratios in fine particles than coarse particles in both wet and dry season. The relatively high δ15N values suggest isotopic enrichment of 15N in aerosols via exchange reaction between NH3 (gas) and NH4+ (particle). We found a strong correlation between TN and NH4+(r2=0.94 in PM2.5 and r2=0.86 in PM10) and NO3- (r 2=0.48 in PM2.5 and r2=0.55 in PM10). We also found that organic nitrogen is less significant than inorganic nitrogen in the Morogoro aerosols. Based on stable carbon isotopic composition, contributions of burning C3 plants to TC were estimated to range from 42 to 74% in PM2.5 and from 39 to 64% in PM10, whereas those of C4 ranged from 26 to 58% in PM2.5 and from 36 to 61% in PM10. These results suggest that burning activities of C3 and C4 plants contribute to organic aerosol formation in Tanzania.
ISSN:1600-0889