Biodegradable Water-Soluble Matrix for Immobilization of Biocidal 4-Hexylresorcinol
Biocidal coatings have been used in biomedicine, cosmetology and the food industry. In this article, the coatings are described as being composed of non-stoichiometric polycomplexes, products of electrostatic coupling of two commercial biodegradable ionic polymers, anionic sodium alginate and cation...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-09-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/1422-0067/24/19/14717 |
Summary: | Biocidal coatings have been used in biomedicine, cosmetology and the food industry. In this article, the coatings are described as being composed of non-stoichiometric polycomplexes, products of electrostatic coupling of two commercial biodegradable ionic polymers, anionic sodium alginate and cationic quaternized hydroxyethyl cellulose ethoxylate. Non-stoichiometric polycomplexes with a 5-fold excess of the cationic polymer were used for immobilizing hydrophobic biocidal 4-hexylresorcinol (HR). Being dispersed in water, the polycomplex particles were capable of absorbing a tenfold excess of HR in relation to the polycation. After deposition onto the plastic surface and drying, the aqueous polycomplex–HR composite formulation forms a transparent homogeneous coating, which swells slightly in water. The interpolyelectrolyte complex (IPEC) is substantially non-toxic. The incorporation of HR in the IPEC imparts antimicrobial activity to the resulting composite, in both aqueous solutions and coatings, against Gram-negative and Gram-positive bacteria and yeast. The polysaccharide-based polycomplexes with embedded HR are promising for the fabrication of biocidal films and coatings. |
---|---|
ISSN: | 1661-6596 1422-0067 |