Biodegradable Water-Soluble Matrix for Immobilization of Biocidal 4-Hexylresorcinol

Biocidal coatings have been used in biomedicine, cosmetology and the food industry. In this article, the coatings are described as being composed of non-stoichiometric polycomplexes, products of electrostatic coupling of two commercial biodegradable ionic polymers, anionic sodium alginate and cation...

Full description

Bibliographic Details
Main Authors: Olga A. Novoskoltseva, Ekaterina A. Litmanovich, Nataliya G. Loiko, Yury A. Nikolaev, Alexander A. Yaroslavov
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/24/19/14717
Description
Summary:Biocidal coatings have been used in biomedicine, cosmetology and the food industry. In this article, the coatings are described as being composed of non-stoichiometric polycomplexes, products of electrostatic coupling of two commercial biodegradable ionic polymers, anionic sodium alginate and cationic quaternized hydroxyethyl cellulose ethoxylate. Non-stoichiometric polycomplexes with a 5-fold excess of the cationic polymer were used for immobilizing hydrophobic biocidal 4-hexylresorcinol (HR). Being dispersed in water, the polycomplex particles were capable of absorbing a tenfold excess of HR in relation to the polycation. After deposition onto the plastic surface and drying, the aqueous polycomplex–HR composite formulation forms a transparent homogeneous coating, which swells slightly in water. The interpolyelectrolyte complex (IPEC) is substantially non-toxic. The incorporation of HR in the IPEC imparts antimicrobial activity to the resulting composite, in both aqueous solutions and coatings, against Gram-negative and Gram-positive bacteria and yeast. The polysaccharide-based polycomplexes with embedded HR are promising for the fabrication of biocidal films and coatings.
ISSN:1661-6596
1422-0067