A generalization of the q-Lidstone series

In this paper, we study the existence of solutions for the general $ q $-Lidstone problem: $ \begin{equation*} (D_{q^{-1}}^{r_n}f)(1) = a_n, \quad (D_{q^{-1}}^{s_n}f)(0) = b_n, \quad (n\in \mathbb{N}) \end{equation*} $ where $ (r_n)_n $ and $ (s_n)_n $ are two sequences of non-negative int...

Full description

Bibliographic Details
Main Author: Maryam AL-Towailb
Format: Article
Language:English
Published: AIMS Press 2022-03-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2022518?viewType=HTML
_version_ 1818336860203646976
author Maryam AL-Towailb
author_facet Maryam AL-Towailb
author_sort Maryam AL-Towailb
collection DOAJ
description In this paper, we study the existence of solutions for the general $ q $-Lidstone problem: $ \begin{equation*} (D_{q^{-1}}^{r_n}f)(1) = a_n, \quad (D_{q^{-1}}^{s_n}f)(0) = b_n, \quad (n\in \mathbb{N}) \end{equation*} $ where $ (r_n)_n $ and $ (s_n)_n $ are two sequences of non-negative integers and $ (a_n)_n $ and $ (b_n)_n $ are two sequences of complex numbers. We define a $ q^{-1} $-standard set of polynomials and then we introduce a generalization of the $ q $-Lidstone expansion theorem.
first_indexed 2024-12-13T14:46:02Z
format Article
id doaj.art-861073f67f014fddb616759475bd6c2b
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-13T14:46:02Z
publishDate 2022-03-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-861073f67f014fddb616759475bd6c2b2022-12-21T23:41:29ZengAIMS PressAIMS Mathematics2473-69882022-03-01759339935210.3934/math.2022518A generalization of the q-Lidstone seriesMaryam AL-Towailb0Department of Computer Science and Engineering, King Saud University, Riyadh, KSAIn this paper, we study the existence of solutions for the general $ q $-Lidstone problem: $ \begin{equation*} (D_{q^{-1}}^{r_n}f)(1) = a_n, \quad (D_{q^{-1}}^{s_n}f)(0) = b_n, \quad (n\in \mathbb{N}) \end{equation*} $ where $ (r_n)_n $ and $ (s_n)_n $ are two sequences of non-negative integers and $ (a_n)_n $ and $ (b_n)_n $ are two sequences of complex numbers. We define a $ q^{-1} $-standard set of polynomials and then we introduce a generalization of the $ q $-Lidstone expansion theorem.https://www.aimspress.com/article/doi/10.3934/math.2022518?viewType=HTMLq-difference equationsstandard sets of polynomialsq-lidstone series
spellingShingle Maryam AL-Towailb
A generalization of the q-Lidstone series
AIMS Mathematics
q-difference equations
standard sets of polynomials
q-lidstone series
title A generalization of the q-Lidstone series
title_full A generalization of the q-Lidstone series
title_fullStr A generalization of the q-Lidstone series
title_full_unstemmed A generalization of the q-Lidstone series
title_short A generalization of the q-Lidstone series
title_sort generalization of the q lidstone series
topic q-difference equations
standard sets of polynomials
q-lidstone series
url https://www.aimspress.com/article/doi/10.3934/math.2022518?viewType=HTML
work_keys_str_mv AT maryamaltowailb ageneralizationoftheqlidstoneseries
AT maryamaltowailb generalizationoftheqlidstoneseries