An Experimental and Computational Investigation of Tailor-Developed Combustion and Air-Handling System Concepts in a Heavy-Duty Gasoline Compression Ignition Engine

This study investigates using tailor-developed combustion and air-handling system concepts to achieve high-efficiency, clean gasoline compression ignition (GCI) combustion, aimed at addressing a future heavy-duty ultralow NOx standard of 0.027 g/kWh at the vehicle tailpipe and the tightening CO<s...

Full description

Bibliographic Details
Main Authors: Yu Zhang, Praveen Kumar, Yuanjiang Pei, Michael Traver, Sriram Popuri
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/3/1087
Description
Summary:This study investigates using tailor-developed combustion and air-handling system concepts to achieve high-efficiency, clean gasoline compression ignition (GCI) combustion, aimed at addressing a future heavy-duty ultralow NOx standard of 0.027 g/kWh at the vehicle tailpipe and the tightening CO<sub>2</sub> limits around the world by combining GCI with a cost-effective engine aftertreatment system. The development activities were conducted based on a 15 L heavy-duty diesel engine. By taking an analysis-led design approach, a first-generation (Gen1) GCI engine concept was developed and tested, encompassing tailor-designed piston bowl geometry, fuel spray pattern, and swirl motion paired with a customized, fixed-geometry, two-stage turbocharging system and a high-pressure EGR loop with two-stage cooling. Across four key steady-state operating points, the Gen1 GCI concept demonstrated 85–95% lower smoke and 2–3% better diesel-equivalent gross indicated fuel consumption compared to the diesel baseline at 1 g/kWh engine-out NOx. By upgrading to a Gen2 air-handling concept that was composed of a prototype, single-stage, variable-geometry turbocharger and a less restrictive EGR loop, 1D system-level analysis predicted that the pumping mean effective pressure was reduced by 43–54% and the diesel-equivalent brake-specific fuel consumption was improved by 2–4%, thereby demonstrating the performance enhancement potential of refining the air-handling system.
ISSN:1996-1073