Long-Term Trends in Inferred Continental Background Ozone in Eastern Australia

A better understanding of background tropospheric ozone delivers multiple benefits. Robust estimates of regional background ozone are required to understand the limits of anthropogenic emissions controlling ozone reduction. Long-term estimates of background ozone assist in characterising changes in...

Full description

Bibliographic Details
Main Authors: Matthew L. Riley, Ningbo Jiang, Hiep Nguyen Duc, Merched Azzi
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/14/7/1104
Description
Summary:A better understanding of background tropospheric ozone delivers multiple benefits. Robust estimates of regional background ozone are required to understand the limits of anthropogenic emissions controlling ozone reduction. Long-term estimates of background ozone assist in characterising changes in atmospheric composition and can help quantify the influence of human activity on the atmosphere. Background tropospheric ozone measurements representative of continental air masses are scarce in Australia. Here, we use k-means clustering to identify a cluster of measurements from the long-term air quality monitoring station at Oakdale, NSW, which are likely to be representative of background air. The cluster is associated with NO<sub>x</sub>-limited air masses of continental origin. From this analysis, we estimate background ozone representative of Eastern Australia. We find recent (2017–2022) mean ozone mixing ratios of 28.5 ppb and identify a statistically significant (α = 0.05) trend in the mean of +1.8 (1.0–2.8) ppb/decade. Our methods demonstrate that some long-term monitoring stations within or near urban areas can provide suitable conditions and datasets for regional Global Atmosphere Watch monitoring.
ISSN:2073-4433