NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit

Epidemic simulations require the ability to sample contact networks from various random graph models. Existing methods can simulate city-scale or even country-scale contact networks, but they are unable to feasibly simulate global-scale contact networks due to high memory consumption. N...

Full description

Bibliographic Details
Main Author: Niema Moshiri
Format: Article
Language:English
Published: GigaScience Press 2022-01-01
Series:GigaByte
Online Access:https://gigabytejournal.com/articles/37
_version_ 1797884348271165440
author Niema Moshiri
author_facet Niema Moshiri
author_sort Niema Moshiri
collection DOAJ
description Epidemic simulations require the ability to sample contact networks from various random graph models. Existing methods can simulate city-scale or even country-scale contact networks, but they are unable to feasibly simulate global-scale contact networks due to high memory consumption. NiemaGraphGen (NGG) is a memory-efficient graph generation tool that enables the simulation of global-scale contact networks. NGG avoids storing the entire graph in memory and is instead intended to be used in a data streaming pipeline, resulting in memory consumption that is orders of magnitude smaller than existing tools. NGG provides a massively-scalable solution for simulating social contact networks, enabling global-scale epidemic simulation studies.
first_indexed 2024-04-10T04:05:09Z
format Article
id doaj.art-864f8614f9874cc182c6c46030aed382
institution Directory Open Access Journal
issn 2709-4715
language English
last_indexed 2024-04-10T04:05:09Z
publishDate 2022-01-01
publisher GigaScience Press
record_format Article
series GigaByte
spelling doaj.art-864f8614f9874cc182c6c46030aed3822023-03-13T06:27:14ZengGigaScience PressGigaByte2709-47152022-01-0110.46471/gigabyte.37NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkitNiema Moshiri 0https://orcid.org/0000-0003-2209-8128Department of Computer Science & Engineering, UC San Diego, La Jolla, 92093, USA Epidemic simulations require the ability to sample contact networks from various random graph models. Existing methods can simulate city-scale or even country-scale contact networks, but they are unable to feasibly simulate global-scale contact networks due to high memory consumption. NiemaGraphGen (NGG) is a memory-efficient graph generation tool that enables the simulation of global-scale contact networks. NGG avoids storing the entire graph in memory and is instead intended to be used in a data streaming pipeline, resulting in memory consumption that is orders of magnitude smaller than existing tools. NGG provides a massively-scalable solution for simulating social contact networks, enabling global-scale epidemic simulation studies. https://gigabytejournal.com/articles/37
spellingShingle Niema Moshiri
NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit
GigaByte
title NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit
title_full NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit
title_fullStr NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit
title_full_unstemmed NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit
title_short NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit
title_sort niemagraphgen a memory efficient global scale contact network simulation toolkit
url https://gigabytejournal.com/articles/37
work_keys_str_mv AT niemamoshiri niemagraphgenamemoryefficientglobalscalecontactnetworksimulationtoolkit