Production of Nanocomposite Silver Packaging using Solution Blending Method for the Supplement of Antibacterial Coating

Abstract   Background and Objective: The objective of this study was to assess antimicrobial effects of silver nanoparticles on Gram-positive and Gram-negative bacteria that used in preparing silver nanocomposite with the antibacterial characteristics using solution method. Moreover, the aim of...

Full description

Bibliographic Details
Main Authors: Zahra Taati Jafroudi, Hamed Ahari, Nekisa Sohrabi Haghdoost, Shahrokh Shabani
Format: Article
Language:English
Published: Shahid Behehsti University of Medical Sciences 2024-03-01
Series:Applied Food Biotechnology
Online Access:https://journals.sbmu.ac.ir/afb/article/view/43876
Description
Summary:Abstract   Background and Objective: The objective of this study was to assess antimicrobial effects of silver nanoparticles on Gram-positive and Gram-negative bacteria that used in preparing silver nanocomposite with the antibacterial characteristics using solution method. Moreover, the aim of the current study was to produce antimicrobial silver nanocomposites for food coating with their effects on a wide range of bacteria. Material and Methods: To assess antibacterial characteristics of silver nanoparticles, several steps were carried out. First, nanoparticles were synthesized through a chemical reduction method using NaBH4 and then analyzed using x radiation diffraction, ultraviolet and visible spectroscopic analysis, dynamic light scattering and scanning electron microscopy nanometric assays. Then, Staphylococcus aureus and Escherichia coli were used as Gram-positive and Gram-negative bacterial indicators. Minimum inhibitory concentration, minimum bactericidal concentration and inhibition zone levels were measured. Nanocomposite was produced using solution blending method and its antibacterial characteristics were assessed using inhibition zone method. Results and Conclusion: Results indicated that silver nanoparticles with 20 and 50 µg.l-1 concentrations included inhibitory effects on Staphylococcus aureus and Escherichia coli, respectively. Furthermore, concentrations of 40 to 60 mg.l-1 included lethal effects on Staphylococcus aureus and Escherichia coli, respectively. Based on the results, the highest antibacterial effects were observed on Gram-positive Staphylococcus aureus. In inhibition zone assays, a 3-5 mm zone was seen around the silver nanoparticle discs in cultures of the microorganisms. In the inhibition zone assay of the produced nanocomposites, the zone was expected regarding the concentrations. Results were calculated in three repetitions and the value estimated through ANOVA was significant when p<0.0001. It has been concluded that silver nanoparticles are useful in Gram-positive and Gram-negative bacteria for the inhibition and destruction. Moreover, it has been verified that using the method includes great effects on antibacterial characteristics of the nanocomposites. Conflict of interest: The authors declare no conflict of interest.
ISSN:2345-5357
2423-4214