On Some Weingarten Surfaces in the Special Linear Group SL(2,<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>)

We classify Weingarten conoids in the real special linear group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SL</mi><mo>(</mo><mn>2</mn><mo>,</mo><...

Full description

Bibliographic Details
Main Author: Marian Ioan Munteanu
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/22/4636
Description
Summary:We classify Weingarten conoids in the real special linear group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SL</mi><mo>(</mo><mn>2</mn><mo>,</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow></semantics></math></inline-formula>. In particular, there is no linear Weingarten nontrivial conoids in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SL</mi><mo>(</mo><mn>2</mn><mo>,</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We also prove that the only conoids in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SL</mi><mo>(</mo><mn>2</mn><mo>,</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow></semantics></math></inline-formula> with constant Gaussian curvature are the flat ones. Finally, we show that any surface that is invariant under left translations of the subgroup <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">N</mi></semantics></math></inline-formula> is a Weingarten surface.
ISSN:2227-7390