On Some Weingarten Surfaces in the Special Linear Group SL(2,<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>)
We classify Weingarten conoids in the real special linear group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SL</mi><mo>(</mo><mn>2</mn><mo>,</mo><...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-11-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/11/22/4636 |
_version_ | 1797458518994845696 |
---|---|
author | Marian Ioan Munteanu |
author_facet | Marian Ioan Munteanu |
author_sort | Marian Ioan Munteanu |
collection | DOAJ |
description | We classify Weingarten conoids in the real special linear group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SL</mi><mo>(</mo><mn>2</mn><mo>,</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow></semantics></math></inline-formula>. In particular, there is no linear Weingarten nontrivial conoids in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SL</mi><mo>(</mo><mn>2</mn><mo>,</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We also prove that the only conoids in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SL</mi><mo>(</mo><mn>2</mn><mo>,</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow></semantics></math></inline-formula> with constant Gaussian curvature are the flat ones. Finally, we show that any surface that is invariant under left translations of the subgroup <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">N</mi></semantics></math></inline-formula> is a Weingarten surface. |
first_indexed | 2024-03-09T16:38:18Z |
format | Article |
id | doaj.art-866877ac1f214b5190a88721265e2814 |
institution | Directory Open Access Journal |
issn | 2227-7390 |
language | English |
last_indexed | 2024-03-09T16:38:18Z |
publishDate | 2023-11-01 |
publisher | MDPI AG |
record_format | Article |
series | Mathematics |
spelling | doaj.art-866877ac1f214b5190a88721265e28142023-11-24T14:54:17ZengMDPI AGMathematics2227-73902023-11-011122463610.3390/math11224636On Some Weingarten Surfaces in the Special Linear Group SL(2,<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>)Marian Ioan Munteanu0Faculty of Mathematics, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, n. 11, 700506 Iasi, RomaniaWe classify Weingarten conoids in the real special linear group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SL</mi><mo>(</mo><mn>2</mn><mo>,</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow></semantics></math></inline-formula>. In particular, there is no linear Weingarten nontrivial conoids in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SL</mi><mo>(</mo><mn>2</mn><mo>,</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We also prove that the only conoids in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SL</mi><mo>(</mo><mn>2</mn><mo>,</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow></semantics></math></inline-formula> with constant Gaussian curvature are the flat ones. Finally, we show that any surface that is invariant under left translations of the subgroup <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">N</mi></semantics></math></inline-formula> is a Weingarten surface.https://www.mdpi.com/2227-7390/11/22/4636rotational surfacesconoids<named-content content-type="inline-formula"><inline-formula><mml:math display="block" id="mm11111111"><mml:semantics><mml:mrow><mml:mi mathvariant="script">N</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula></named-content>-surfacesWeingarten surfacesspecial linear group |
spellingShingle | Marian Ioan Munteanu On Some Weingarten Surfaces in the Special Linear Group SL(2,<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>) Mathematics rotational surfaces conoids <named-content content-type="inline-formula"><inline-formula><mml:math display="block" id="mm11111111"><mml:semantics><mml:mrow><mml:mi mathvariant="script">N</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula></named-content>-surfaces Weingarten surfaces special linear group |
title | On Some Weingarten Surfaces in the Special Linear Group SL(2,<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>) |
title_full | On Some Weingarten Surfaces in the Special Linear Group SL(2,<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>) |
title_fullStr | On Some Weingarten Surfaces in the Special Linear Group SL(2,<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>) |
title_full_unstemmed | On Some Weingarten Surfaces in the Special Linear Group SL(2,<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>) |
title_short | On Some Weingarten Surfaces in the Special Linear Group SL(2,<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>) |
title_sort | on some weingarten surfaces in the special linear group sl 2 inline formula math display inline semantics mrow mi mathvariant double struck r mi mrow semantics math inline formula |
topic | rotational surfaces conoids <named-content content-type="inline-formula"><inline-formula><mml:math display="block" id="mm11111111"><mml:semantics><mml:mrow><mml:mi mathvariant="script">N</mml:mi></mml:mrow></mml:semantics></mml:math></inline-formula></named-content>-surfaces Weingarten surfaces special linear group |
url | https://www.mdpi.com/2227-7390/11/22/4636 |
work_keys_str_mv | AT marianioanmunteanu onsomeweingartensurfacesinthespeciallineargroupsl2inlineformulamathdisplayinlinesemanticsmrowmimathvariantdoublestruckrmimrowsemanticsmathinlineformula |