SIMPLY CONNECTED, SPINELESS 4-MANIFOLDS

We construct infinitely many compact, smooth 4-manifolds which are homotopy equivalent to $S^{2}$ but do not admit a spine (that is, a piecewise linear embedding of $S^{2}$ that realizes the homotopy equivalence). This is the remaining case in the existence problem for codimension-2 spines in simply...

Full description

Bibliographic Details
Main Authors: ADAM SIMON LEVINE, TYE LIDMAN
Format: Article
Language:English
Published: Cambridge University Press 2019-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509419000112/type/journal_article

Similar Items