Disparification and extinction trade-offs shaped the evolution of Permian to Jurassic Odonata

Summary: Owing to their prevalence in nowadays terrestrial ecosystems, insects are a relevant group to assess the impact of mass extinctions on emerged land. However, limitations of the insect fossil record make it difficult to assess the impact of such events based on taxonomic diversity alone. The...

Full description

Bibliographic Details
Main Authors: Isabelle Deregnaucourt, Jérémie Bardin, Loïc Villier, Romain Julliard, Olivier Béthoux
Format: Article
Language:English
Published: Elsevier 2023-08-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004223014979
Description
Summary:Summary: Owing to their prevalence in nowadays terrestrial ecosystems, insects are a relevant group to assess the impact of mass extinctions on emerged land. However, limitations of the insect fossil record make it difficult to assess the impact of such events based on taxonomic diversity alone. Therefore, we documented trends in morphological diversity, i.e., disparity, using wings of Permian to Jurassic Odonata as model. Our results show a decreasing trend in disparity while species richness increased. Both the Permian-Triassic and Triassic-Jurassic transitions are revealed as important events, associated with strong morphospace restructuring due to selective extinction. In each case, a recovery was assured by the diversification of new forms compensating the loss of others. Early representatives of Odonata continuously evolved new shapes, a pattern contrasting with the classical assertion of a morphospace fulfilled early and followed by selective extinctions and specialization within it.
ISSN:2589-0042