Deep embedded clustering generalisability and adaptation for integrating mixed datatypes: two critical care cohorts
Abstract We validated a Deep Embedded Clustering (DEC) model and its adaptation for integrating mixed datatypes (in this study, numerical and categorical variables). Deep Embedded Clustering (DEC) is a promising technique capable of managing extensive sets of variables and non-linear relationships....
Main Authors: | Jip W. T. M. de Kok, Frank van Rosmalen, Jacqueline Koeze, Frederik Keus, Sander M. J. van Kuijk, José Castela Forte, Ronny M. Schnabel, Rob G. H. Driessen, Thijs T. W. van Herpt, Jan-Willem E. M. Sels, Dennis C. J. J. Bergmans, Chris P. H. Lexis, William P. T. M. van Doorn, Steven J. R. Meex, Minnan Xu, Xavier Borrat, Rachel Cavill, Iwan C. C. van der Horst, Bas C. T. van Bussel |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2024-01-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-024-51699-z |
Similar Items
-
Disciplined‚ efficient‚ generalised folds for nested datatypes
by: Martin, C, et al.
Published: (2004) -
Disciplined, efficient, generalised folds for nested datatypes
by: Martin, C, et al.
Published: (2004) -
A lightweight approach to datatype−generic rewriting
by: van Noort, T, et al.
Published: (2010) -
A Lightweight Approach to Datatype−generic Rewriting
by: van Noort, T, et al.
Published: (2010) -
On the Semantics of Nested Datatypes
by: Martin, C, et al.
Published: (2001)