Daunorubicin and Its Active Metabolite Pharmacokinetic Profiles in Acute Myeloid Leukaemia Patients: A Pharmacokinetic Ancillary Study of the BIG-1 Trial

Daunorubicin pharmacokinetics (PK) are characterised by an important inter-individual variability, which raises questions about the optimal dose regimen in patients with acute myeloid leukaemia. The aim of the study is to assess the joint daunorubicin/daunorubicinol PK profile and to define an optim...

Full description

Bibliographic Details
Main Authors: Guillaume Drevin, Marie Briet, Caroline Bazzoli, Emmanuel Gyan, Aline Schmidt, Hervé Dombret, Corentin Orvain, Aurelien Giltat, Christian Recher, Norbert Ifrah, Philippe Guardiola, Mathilde Hunault-Berger, Chadi Abbara
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Pharmaceutics
Subjects:
Online Access:https://www.mdpi.com/1999-4923/14/4/792
_version_ 1797444239731195904
author Guillaume Drevin
Marie Briet
Caroline Bazzoli
Emmanuel Gyan
Aline Schmidt
Hervé Dombret
Corentin Orvain
Aurelien Giltat
Christian Recher
Norbert Ifrah
Philippe Guardiola
Mathilde Hunault-Berger
Chadi Abbara
author_facet Guillaume Drevin
Marie Briet
Caroline Bazzoli
Emmanuel Gyan
Aline Schmidt
Hervé Dombret
Corentin Orvain
Aurelien Giltat
Christian Recher
Norbert Ifrah
Philippe Guardiola
Mathilde Hunault-Berger
Chadi Abbara
author_sort Guillaume Drevin
collection DOAJ
description Daunorubicin pharmacokinetics (PK) are characterised by an important inter-individual variability, which raises questions about the optimal dose regimen in patients with acute myeloid leukaemia. The aim of the study is to assess the joint daunorubicin/daunorubicinol PK profile and to define an optimal population PK study design. Fourteen patients were enrolled in the PK ancillary study of the BIG-1 trial and 6–8 samples were taken up to 24 h after administration of the first dose of daunorubicin (90 mg/m<sup>2</sup>/day). Daunorubicin and daunorubicinol quantifications were assessed using a validated liquid chromatography technique coupled with a fluorescence detector method. Data were analysed using a non-compartmental approach and non-linear mixed effects modelling. Optimal sampling strategy was proposed using the R function PFIM. The median daunorubicin and daunorubicinol AUC0-tlast were 577 ng/mL·hr (Range: 375–1167) and 2200 ng/mL·hr (range: 933–4683), respectively. The median metabolic ratio was 0.32 (range: 0.1–0.44). Daunorubicin PK was best described by a three-compartment parent, two-compartment metabolite model, with a double first-order transformation of daunorubicin to metabolite. Body surface area and plasma creatinine had a significant impact on the daunorubicin and daunorubicinol PK. A practical optimal population design has been derived from this model with five sampling times per subject (0.5, 0.75, 2, 9, 24 h) and this can be used for a future population PK study.
first_indexed 2024-03-09T13:08:48Z
format Article
id doaj.art-8686c66fdabb490b9fbcf1b70949d057
institution Directory Open Access Journal
issn 1999-4923
language English
last_indexed 2024-03-09T13:08:48Z
publishDate 2022-04-01
publisher MDPI AG
record_format Article
series Pharmaceutics
spelling doaj.art-8686c66fdabb490b9fbcf1b70949d0572023-11-30T21:44:17ZengMDPI AGPharmaceutics1999-49232022-04-0114479210.3390/pharmaceutics14040792Daunorubicin and Its Active Metabolite Pharmacokinetic Profiles in Acute Myeloid Leukaemia Patients: A Pharmacokinetic Ancillary Study of the BIG-1 TrialGuillaume Drevin0Marie Briet1Caroline Bazzoli2Emmanuel Gyan3Aline Schmidt4Hervé Dombret5Corentin Orvain6Aurelien Giltat7Christian Recher8Norbert Ifrah9Philippe Guardiola10Mathilde Hunault-Berger11Chadi Abbara12Service de Pharmacologie-Toxicologie et Pharmacovigilance, Centre Hospitalo-Universitaire d’Angers, F-49100 Angers, FranceService de Pharmacologie-Toxicologie et Pharmacovigilance, Centre Hospitalo-Universitaire d’Angers, F-49100 Angers, FranceGrenoble INP, TIMC-IMAG, Université Grenoble Alpes, CNRS, F-38000 Grenoble, FranceService d’Hématologie et Thérapie Cellulaire, Equipe LNOx, ERL CNRS 7001, Centre Hospitalier Universitaire, Université de Tours, F-37000 Tours, FranceUFR Santé, Université Angers, F-49100 Angers, FranceBlood Disease Department, University Hospital Saint Louis AP-HP, F-75010 Paris, FranceFédération Hospitalo-Universitaire GOAL, F-49033 Angers, FranceFédération Hospitalo-Universitaire GOAL, F-49033 Angers, FranceInsitut Universitaire du Cancer de Toulouse Oncolpole, Unversité Toulouse III Paul Sabatier, F-31000 Toulouse, FranceUFR Santé, Université Angers, F-49100 Angers, FranceUFR Santé, Université Angers, F-49100 Angers, FranceUFR Santé, Université Angers, F-49100 Angers, FranceService de Pharmacologie-Toxicologie et Pharmacovigilance, Centre Hospitalo-Universitaire d’Angers, F-49100 Angers, FranceDaunorubicin pharmacokinetics (PK) are characterised by an important inter-individual variability, which raises questions about the optimal dose regimen in patients with acute myeloid leukaemia. The aim of the study is to assess the joint daunorubicin/daunorubicinol PK profile and to define an optimal population PK study design. Fourteen patients were enrolled in the PK ancillary study of the BIG-1 trial and 6–8 samples were taken up to 24 h after administration of the first dose of daunorubicin (90 mg/m<sup>2</sup>/day). Daunorubicin and daunorubicinol quantifications were assessed using a validated liquid chromatography technique coupled with a fluorescence detector method. Data were analysed using a non-compartmental approach and non-linear mixed effects modelling. Optimal sampling strategy was proposed using the R function PFIM. The median daunorubicin and daunorubicinol AUC0-tlast were 577 ng/mL·hr (Range: 375–1167) and 2200 ng/mL·hr (range: 933–4683), respectively. The median metabolic ratio was 0.32 (range: 0.1–0.44). Daunorubicin PK was best described by a three-compartment parent, two-compartment metabolite model, with a double first-order transformation of daunorubicin to metabolite. Body surface area and plasma creatinine had a significant impact on the daunorubicin and daunorubicinol PK. A practical optimal population design has been derived from this model with five sampling times per subject (0.5, 0.75, 2, 9, 24 h) and this can be used for a future population PK study.https://www.mdpi.com/1999-4923/14/4/792daunorubicinpharmacokineticsacute myeloid leukaemiamodelling
spellingShingle Guillaume Drevin
Marie Briet
Caroline Bazzoli
Emmanuel Gyan
Aline Schmidt
Hervé Dombret
Corentin Orvain
Aurelien Giltat
Christian Recher
Norbert Ifrah
Philippe Guardiola
Mathilde Hunault-Berger
Chadi Abbara
Daunorubicin and Its Active Metabolite Pharmacokinetic Profiles in Acute Myeloid Leukaemia Patients: A Pharmacokinetic Ancillary Study of the BIG-1 Trial
Pharmaceutics
daunorubicin
pharmacokinetics
acute myeloid leukaemia
modelling
title Daunorubicin and Its Active Metabolite Pharmacokinetic Profiles in Acute Myeloid Leukaemia Patients: A Pharmacokinetic Ancillary Study of the BIG-1 Trial
title_full Daunorubicin and Its Active Metabolite Pharmacokinetic Profiles in Acute Myeloid Leukaemia Patients: A Pharmacokinetic Ancillary Study of the BIG-1 Trial
title_fullStr Daunorubicin and Its Active Metabolite Pharmacokinetic Profiles in Acute Myeloid Leukaemia Patients: A Pharmacokinetic Ancillary Study of the BIG-1 Trial
title_full_unstemmed Daunorubicin and Its Active Metabolite Pharmacokinetic Profiles in Acute Myeloid Leukaemia Patients: A Pharmacokinetic Ancillary Study of the BIG-1 Trial
title_short Daunorubicin and Its Active Metabolite Pharmacokinetic Profiles in Acute Myeloid Leukaemia Patients: A Pharmacokinetic Ancillary Study of the BIG-1 Trial
title_sort daunorubicin and its active metabolite pharmacokinetic profiles in acute myeloid leukaemia patients a pharmacokinetic ancillary study of the big 1 trial
topic daunorubicin
pharmacokinetics
acute myeloid leukaemia
modelling
url https://www.mdpi.com/1999-4923/14/4/792
work_keys_str_mv AT guillaumedrevin daunorubicinanditsactivemetabolitepharmacokineticprofilesinacutemyeloidleukaemiapatientsapharmacokineticancillarystudyofthebig1trial
AT mariebriet daunorubicinanditsactivemetabolitepharmacokineticprofilesinacutemyeloidleukaemiapatientsapharmacokineticancillarystudyofthebig1trial
AT carolinebazzoli daunorubicinanditsactivemetabolitepharmacokineticprofilesinacutemyeloidleukaemiapatientsapharmacokineticancillarystudyofthebig1trial
AT emmanuelgyan daunorubicinanditsactivemetabolitepharmacokineticprofilesinacutemyeloidleukaemiapatientsapharmacokineticancillarystudyofthebig1trial
AT alineschmidt daunorubicinanditsactivemetabolitepharmacokineticprofilesinacutemyeloidleukaemiapatientsapharmacokineticancillarystudyofthebig1trial
AT hervedombret daunorubicinanditsactivemetabolitepharmacokineticprofilesinacutemyeloidleukaemiapatientsapharmacokineticancillarystudyofthebig1trial
AT corentinorvain daunorubicinanditsactivemetabolitepharmacokineticprofilesinacutemyeloidleukaemiapatientsapharmacokineticancillarystudyofthebig1trial
AT aureliengiltat daunorubicinanditsactivemetabolitepharmacokineticprofilesinacutemyeloidleukaemiapatientsapharmacokineticancillarystudyofthebig1trial
AT christianrecher daunorubicinanditsactivemetabolitepharmacokineticprofilesinacutemyeloidleukaemiapatientsapharmacokineticancillarystudyofthebig1trial
AT norbertifrah daunorubicinanditsactivemetabolitepharmacokineticprofilesinacutemyeloidleukaemiapatientsapharmacokineticancillarystudyofthebig1trial
AT philippeguardiola daunorubicinanditsactivemetabolitepharmacokineticprofilesinacutemyeloidleukaemiapatientsapharmacokineticancillarystudyofthebig1trial
AT mathildehunaultberger daunorubicinanditsactivemetabolitepharmacokineticprofilesinacutemyeloidleukaemiapatientsapharmacokineticancillarystudyofthebig1trial
AT chadiabbara daunorubicinanditsactivemetabolitepharmacokineticprofilesinacutemyeloidleukaemiapatientsapharmacokineticancillarystudyofthebig1trial