Influence of Sintering Process on Microstructure and Mechanical Properties of Ti(C,N)-Based Cermet

In this study, a Ti(C,N)-based cermet material was prepared through vacuum sintering. The research also investigates how holding time and maximum sintering temperature influence the material microstructure and mechanical properties. X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) were...

Full description

Bibliographic Details
Main Authors: Kaixun Ji, Yanxin Meng, Fuzeng Wang, Yousheng Li
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/13/18/3938
Description
Summary:In this study, a Ti(C,N)-based cermet material was prepared through vacuum sintering. The research also investigates how holding time and maximum sintering temperature influence the material microstructure and mechanical properties. X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) were used to analyze the composition of the cermet. The microstructure of the cermet was analyzed and examined using a scanning electron microscope (SEM). A Vickers hardness tester was used to test the mechanical properties of the materials. As indicated by testing results, the hardness of the material decreases as the temperature of sintering increases, and its fracture toughness increases gradually as holding time increases. Ti(C,N)-based cermet manifested the optimal mechanical properties when sintering was conducted under 1400 °C with 80 min of holding time. Moreover, the material microstructure is significantly affected by the sintering process. The grain size of Ti(C,N) cermets increases as the sintering temperature increases. The microstructure tends to be uniform and the complete core-rim structures are established as the holding time increases.
ISSN:1996-1944