Convolutions in µ-pseudo almost periodic and µ-pseudo almost automorphic function spaces and applications to solve Integral equations

The aim of this work is to give sufficient conditions ensuring that the space PAP(𝕉, X, µ) of µ-pseudo almost periodic functions and the space PAA(𝕉, X, µ) of µ-pseudo almost automorphic functions are invariant by the convolution product f = k * f, k ∈ L1(𝕉). These results establish sufficient assum...

Full description

Bibliographic Details
Main Authors: Béssémè Fritz Mbounja, Békollè David, Ezzinbi Khalil, Fatajou Samir, Danga Duplex Elvis Houpa
Format: Article
Language:English
Published: De Gruyter 2020-06-01
Series:Nonautonomous Dynamical Systems
Subjects:
Online Access:https://doi.org/10.1515/msds-2020-0102
_version_ 1819009442949103616
author Béssémè Fritz Mbounja
Békollè David
Ezzinbi Khalil
Fatajou Samir
Danga Duplex Elvis Houpa
author_facet Béssémè Fritz Mbounja
Békollè David
Ezzinbi Khalil
Fatajou Samir
Danga Duplex Elvis Houpa
author_sort Béssémè Fritz Mbounja
collection DOAJ
description The aim of this work is to give sufficient conditions ensuring that the space PAP(𝕉, X, µ) of µ-pseudo almost periodic functions and the space PAA(𝕉, X, µ) of µ-pseudo almost automorphic functions are invariant by the convolution product f = k * f, k ∈ L1(𝕉). These results establish sufficient assumptions on k and the measure µ. As a consequence, we investigate the existence and uniqueness of µ-pseudo almost periodic solutions and µ-pseudo almost automorphic solutions for some abstract integral equations, evolution equations and partial functional differential equations.
first_indexed 2024-12-21T00:56:27Z
format Article
id doaj.art-868e773a53ff4ac1a41383097858b313
institution Directory Open Access Journal
issn 2353-0626
language English
last_indexed 2024-12-21T00:56:27Z
publishDate 2020-06-01
publisher De Gruyter
record_format Article
series Nonautonomous Dynamical Systems
spelling doaj.art-868e773a53ff4ac1a41383097858b3132022-12-21T19:21:17ZengDe GruyterNonautonomous Dynamical Systems2353-06262020-06-0171325210.1515/msds-2020-0102msds-2020-0102Convolutions in µ-pseudo almost periodic and µ-pseudo almost automorphic function spaces and applications to solve Integral equationsBéssémè Fritz Mbounja0Békollè David1Ezzinbi Khalil2Fatajou Samir3Danga Duplex Elvis Houpa4Département des Mathématiques Appliquées et Informatique, Ecole de Géologie et d’Exploitation Minière de Meiganga, Université de Ngaoundéré, B.P. 115 CamerounDépartement de Mathématiques et Informatique, Faculté des Sciences, Université de Ngaoundéré, B.P. 454 CamerounDépartement de Mathématiques, Faculté des Sciences Semlalia, Université Cadi-Ayyad, B.P. 2390 Marrakesh, MoroccoDépartement de Mathématiques et Informatique, Faculté Polydisciplinaire Sa˝„Université Cadi-Ayyad, Sidi Bouzid B.P.4162, MoroccoDépartement de Mathématiques et Informatique, Faculté des Sciences, Université de Ngaoundéré, B.P. 454 CamerounThe aim of this work is to give sufficient conditions ensuring that the space PAP(𝕉, X, µ) of µ-pseudo almost periodic functions and the space PAA(𝕉, X, µ) of µ-pseudo almost automorphic functions are invariant by the convolution product f = k * f, k ∈ L1(𝕉). These results establish sufficient assumptions on k and the measure µ. As a consequence, we investigate the existence and uniqueness of µ-pseudo almost periodic solutions and µ-pseudo almost automorphic solutions for some abstract integral equations, evolution equations and partial functional differential equations.https://doi.org/10.1515/msds-2020-0102measure theoryµ-ergodicµ-pseudo almost periodic functionsµ-pseudo almost automorphic functionsintegral equationsevolution equationspartial functional differential equationsreaction-diffusion systems34c2734k1435b1535k5737a30
spellingShingle Béssémè Fritz Mbounja
Békollè David
Ezzinbi Khalil
Fatajou Samir
Danga Duplex Elvis Houpa
Convolutions in µ-pseudo almost periodic and µ-pseudo almost automorphic function spaces and applications to solve Integral equations
Nonautonomous Dynamical Systems
measure theory
µ-ergodic
µ-pseudo almost periodic functions
µ-pseudo almost automorphic functions
integral equations
evolution equations
partial functional differential equations
reaction-diffusion systems
34c27
34k14
35b15
35k57
37a30
title Convolutions in µ-pseudo almost periodic and µ-pseudo almost automorphic function spaces and applications to solve Integral equations
title_full Convolutions in µ-pseudo almost periodic and µ-pseudo almost automorphic function spaces and applications to solve Integral equations
title_fullStr Convolutions in µ-pseudo almost periodic and µ-pseudo almost automorphic function spaces and applications to solve Integral equations
title_full_unstemmed Convolutions in µ-pseudo almost periodic and µ-pseudo almost automorphic function spaces and applications to solve Integral equations
title_short Convolutions in µ-pseudo almost periodic and µ-pseudo almost automorphic function spaces and applications to solve Integral equations
title_sort convolutions in µ pseudo almost periodic and µ pseudo almost automorphic function spaces and applications to solve integral equations
topic measure theory
µ-ergodic
µ-pseudo almost periodic functions
µ-pseudo almost automorphic functions
integral equations
evolution equations
partial functional differential equations
reaction-diffusion systems
34c27
34k14
35b15
35k57
37a30
url https://doi.org/10.1515/msds-2020-0102
work_keys_str_mv AT bessemefritzmbounja convolutionsinμpseudoalmostperiodicandμpseudoalmostautomorphicfunctionspacesandapplicationstosolveintegralequations
AT bekolledavid convolutionsinμpseudoalmostperiodicandμpseudoalmostautomorphicfunctionspacesandapplicationstosolveintegralequations
AT ezzinbikhalil convolutionsinμpseudoalmostperiodicandμpseudoalmostautomorphicfunctionspacesandapplicationstosolveintegralequations
AT fatajousamir convolutionsinμpseudoalmostperiodicandμpseudoalmostautomorphicfunctionspacesandapplicationstosolveintegralequations
AT dangaduplexelvishoupa convolutionsinμpseudoalmostperiodicandμpseudoalmostautomorphicfunctionspacesandapplicationstosolveintegralequations