Endoplasmic reticulum stress promotes the release of exosomal PD-L1 from head and neck cancer cells and facilitates M2 macrophage polarization

Abstract Background Endoplasmic reticulum (ER) stress has been found to foster the escape of cancer cells from immune surveillance and upregulate PD-L1 expression. However, the underlying mechanisms are unknown. Methods While analyzing the protein levels using immunofluorescence and Western blotting...

Full description

Bibliographic Details
Main Authors: Yi Yuan, Pengfei Jiao, Zeyu Wang, Mengqi Chen, Hongming Du, Liang Xu, Juanyong Xu, Youjin Dai, Fu-gen Wu, Yaqin Zhang, Heming Wu
Format: Article
Language:English
Published: BMC 2022-01-01
Series:Cell Communication and Signaling
Subjects:
Online Access:https://doi.org/10.1186/s12964-021-00810-2
Description
Summary:Abstract Background Endoplasmic reticulum (ER) stress has been found to foster the escape of cancer cells from immune surveillance and upregulate PD-L1 expression. However, the underlying mechanisms are unknown. Methods While analyzing the protein levels using immunofluorescence and Western blotting, the RNA levels were measured using qRT-PCR. Ten injection of exosomes into six-week-old nude mice was made through the tail vein once every other day in total. Results The expression of certain ER stress markers such as PERK (PKR-like endoplasmic reticulum kinase), ATF6 (activating transcription factor 6), and GRP78 (glucose-regulated protein 78), was found to be upregulated in the oral squamous cell carcinoma (OSCC) tissues and related to poor overall survival. There is a positive relationship between the extent of ER stress-related proteins and a cluster of PD-L1 expression and macrophage infiltration among the OSCC tissues. Further, incubation with exosomes derived from ER-stressed HN4 cells (Exo-ER) was found to upregulate PD-L1 extents in macrophages in vitro and in vivo, and macrophage polarization toward the M2 subtype was promoted by upregulating PD-L1. Conclusions ER stress causes OSCC cells to secrete exosomal PD-L1 and upregulates PD-L1 expression in macrophages to drive M2 macrophage polarization. The delineation of a new exosome-modulated mechanism was made for OSCC–macrophage crosstalk driving tumor development and to be examined for its therapeutic use. Graphical abstract Exosomal PD-L1 secreted by ER-stressed OSCC cells promoted M2 macrophage polarization. Video Abstract.
ISSN:1478-811X