Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert

<p>We investigate the influence of regional atmospheric circulation on the evaporation of a saline lake in the Altiplano (also known as the Andean Plateau) region of the Atacama Desert. For that, we conducted a field experiment in the Salar del Huasco (SDH) basin (135 <span class="inli...

Full description

Bibliographic Details
Main Authors: F. Lobos-Roco, O. Hartogensis, J. Vilà-Guerau de Arellano, A. de la Fuente, R. Muñoz, J. Rutllant, F. Suárez
Format: Article
Language:English
Published: Copernicus Publications 2021-06-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/21/9125/2021/acp-21-9125-2021.pdf
_version_ 1819106628235952128
author F. Lobos-Roco
F. Lobos-Roco
F. Lobos-Roco
O. Hartogensis
J. Vilà-Guerau de Arellano
A. de la Fuente
R. Muñoz
J. Rutllant
J. Rutllant
F. Suárez
F. Suárez
F. Suárez
author_facet F. Lobos-Roco
F. Lobos-Roco
F. Lobos-Roco
O. Hartogensis
J. Vilà-Guerau de Arellano
A. de la Fuente
R. Muñoz
J. Rutllant
J. Rutllant
F. Suárez
F. Suárez
F. Suárez
author_sort F. Lobos-Roco
collection DOAJ
description <p>We investigate the influence of regional atmospheric circulation on the evaporation of a saline lake in the Altiplano (also known as the Andean Plateau) region of the Atacama Desert. For that, we conducted a field experiment in the Salar del Huasco (SDH) basin (135 <span class="inline-formula">km</span> east of the Pacific Ocean), in November 2018. The measurements were based on surface energy balance (SEB) stations and airborne observations. Additionally, we simulate the meteorological conditions on a regional scale using the Weather Research and Forecasting Model. Our findings show two evaporation regimes: (1) a morning regime controlled by local conditions, in which SEB is dominated by the ground heat flux (<span class="inline-formula">∼0.5</span> of net radiation), very low evaporation (<span class="inline-formula"><i>L</i><sub><i>v</i></sub><i>E</i>&lt;30</span> <span class="inline-formula">W m<sup>−2</sup></span>) and wind speed <span class="inline-formula">&lt;1</span> <span class="inline-formula">m s<sup>−1</sup></span>; and (2) an afternoon regime controlled by regional-scale forcing that leads to a sudden increase in wind speed (<span class="inline-formula">&gt;15</span> <span class="inline-formula">m s<sup>−1</sup></span>) and a jump in evaporation to <span class="inline-formula">&gt;500</span> <span class="inline-formula">W m<sup>−2</sup></span>. While in the morning evaporation is limited by very low turbulence (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi>u</mi><mo>*</mo></msup><mo>∼</mo><mn mathvariant="normal">0.1</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="40pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="8e070312c3b1887bd0a2e14c5e273ff9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-9125-2021-ie00001.svg" width="40pt" height="11pt" src="acp-21-9125-2021-ie00001.png"/></svg:svg></span></span> <span class="inline-formula">m s<sup>−1</sup></span>), in the afternoon strong winds (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi>u</mi><mo>*</mo></msup><mo>∼</mo><mn mathvariant="normal">0.65</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="a4765698574557daa47492956badf195"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-9125-2021-ie00002.svg" width="46pt" height="11pt" src="acp-21-9125-2021-ie00002.png"/></svg:svg></span></span> <span class="inline-formula">m s<sup>−1</sup></span>) enhance mechanical turbulence, increasing evaporation. We find that the strong winds in addition to the locally available radiative energy are the principal drivers of evaporation. These winds are the result of a diurnal cyclic circulation between the Pacific Ocean and the Atacama Desert. Finally, we quantify the advection and entrainment of free-tropospheric air masses driven by boundary layer development. Our research contributes to untangling and linking local- and regional-scale processes driving evaporation across confined saline lakes in arid regions.</p>
first_indexed 2024-12-22T02:41:10Z
format Article
id doaj.art-868eda40839d4be1ad6e8e3f9fd82218
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-22T02:41:10Z
publishDate 2021-06-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-868eda40839d4be1ad6e8e3f9fd822182022-12-21T18:41:37ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242021-06-01219125915010.5194/acp-21-9125-2021Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama DesertF. Lobos-Roco0F. Lobos-Roco1F. Lobos-Roco2O. Hartogensis3J. Vilà-Guerau de Arellano4A. de la Fuente5R. Muñoz6J. Rutllant7J. Rutllant8F. Suárez9F. Suárez10F. Suárez11Meteorology and Air Quality, Wageningen University, Wageningen, the NetherlandsDepartment of Hydraulic and Environmental Engineering, Pontificia Universidad Católica de Chile, Santiago, ChileInvited contribution by Felipe Lobos-Roco, recipient of the EGU Atmospheric Sciences Outstanding Student Poster and PICO Award 2019. Meteorology and Air Quality, Wageningen University, Wageningen, the NetherlandsMeteorology and Air Quality, Wageningen University, Wageningen, the NetherlandsDepartment of Civil Engineering, Universidad de Chile, Santiago, ChileDepartment of Geophysics, Universidad de Chile, Santiago, ChileDepartment of Geophysics, Universidad de Chile, Santiago, ChileCentro de Estudios Avanzados en Zonas Áridas, La Serena, ChileDepartment of Hydraulic and Environmental Engineering, Pontificia Universidad Católica de Chile, Santiago, ChileCentro de Desarrollo Urbano Sustentable (CEDEUS), Santiago, ChileCentro de Excelencia en Geotermia de los Andes (CEGA), Santiago, Chile<p>We investigate the influence of regional atmospheric circulation on the evaporation of a saline lake in the Altiplano (also known as the Andean Plateau) region of the Atacama Desert. For that, we conducted a field experiment in the Salar del Huasco (SDH) basin (135 <span class="inline-formula">km</span> east of the Pacific Ocean), in November 2018. The measurements were based on surface energy balance (SEB) stations and airborne observations. Additionally, we simulate the meteorological conditions on a regional scale using the Weather Research and Forecasting Model. Our findings show two evaporation regimes: (1) a morning regime controlled by local conditions, in which SEB is dominated by the ground heat flux (<span class="inline-formula">∼0.5</span> of net radiation), very low evaporation (<span class="inline-formula"><i>L</i><sub><i>v</i></sub><i>E</i>&lt;30</span> <span class="inline-formula">W m<sup>−2</sup></span>) and wind speed <span class="inline-formula">&lt;1</span> <span class="inline-formula">m s<sup>−1</sup></span>; and (2) an afternoon regime controlled by regional-scale forcing that leads to a sudden increase in wind speed (<span class="inline-formula">&gt;15</span> <span class="inline-formula">m s<sup>−1</sup></span>) and a jump in evaporation to <span class="inline-formula">&gt;500</span> <span class="inline-formula">W m<sup>−2</sup></span>. While in the morning evaporation is limited by very low turbulence (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi>u</mi><mo>*</mo></msup><mo>∼</mo><mn mathvariant="normal">0.1</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="40pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="8e070312c3b1887bd0a2e14c5e273ff9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-9125-2021-ie00001.svg" width="40pt" height="11pt" src="acp-21-9125-2021-ie00001.png"/></svg:svg></span></span> <span class="inline-formula">m s<sup>−1</sup></span>), in the afternoon strong winds (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi>u</mi><mo>*</mo></msup><mo>∼</mo><mn mathvariant="normal">0.65</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="a4765698574557daa47492956badf195"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-9125-2021-ie00002.svg" width="46pt" height="11pt" src="acp-21-9125-2021-ie00002.png"/></svg:svg></span></span> <span class="inline-formula">m s<sup>−1</sup></span>) enhance mechanical turbulence, increasing evaporation. We find that the strong winds in addition to the locally available radiative energy are the principal drivers of evaporation. These winds are the result of a diurnal cyclic circulation between the Pacific Ocean and the Atacama Desert. Finally, we quantify the advection and entrainment of free-tropospheric air masses driven by boundary layer development. Our research contributes to untangling and linking local- and regional-scale processes driving evaporation across confined saline lakes in arid regions.</p>https://acp.copernicus.org/articles/21/9125/2021/acp-21-9125-2021.pdf
spellingShingle F. Lobos-Roco
F. Lobos-Roco
F. Lobos-Roco
O. Hartogensis
J. Vilà-Guerau de Arellano
A. de la Fuente
R. Muñoz
J. Rutllant
J. Rutllant
F. Suárez
F. Suárez
F. Suárez
Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert
Atmospheric Chemistry and Physics
title Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert
title_full Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert
title_fullStr Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert
title_full_unstemmed Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert
title_short Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert
title_sort local evaporation controlled by regional atmospheric circulation in the altiplano of the atacama desert
url https://acp.copernicus.org/articles/21/9125/2021/acp-21-9125-2021.pdf
work_keys_str_mv AT flobosroco localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert
AT flobosroco localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert
AT flobosroco localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert
AT ohartogensis localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert
AT jvilagueraudearellano localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert
AT adelafuente localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert
AT rmunoz localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert
AT jrutllant localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert
AT jrutllant localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert
AT fsuarez localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert
AT fsuarez localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert
AT fsuarez localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert