Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert
<p>We investigate the influence of regional atmospheric circulation on the evaporation of a saline lake in the Altiplano (also known as the Andean Plateau) region of the Atacama Desert. For that, we conducted a field experiment in the Salar del Huasco (SDH) basin (135 <span class="inli...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-06-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/21/9125/2021/acp-21-9125-2021.pdf |
_version_ | 1819106628235952128 |
---|---|
author | F. Lobos-Roco F. Lobos-Roco F. Lobos-Roco O. Hartogensis J. Vilà-Guerau de Arellano A. de la Fuente R. Muñoz J. Rutllant J. Rutllant F. Suárez F. Suárez F. Suárez |
author_facet | F. Lobos-Roco F. Lobos-Roco F. Lobos-Roco O. Hartogensis J. Vilà-Guerau de Arellano A. de la Fuente R. Muñoz J. Rutllant J. Rutllant F. Suárez F. Suárez F. Suárez |
author_sort | F. Lobos-Roco |
collection | DOAJ |
description | <p>We investigate the influence of regional atmospheric circulation on the
evaporation of a saline lake in the Altiplano (also known as the Andean Plateau) region of the Atacama Desert. For that, we conducted a field experiment in the Salar del Huasco
(SDH) basin (135 <span class="inline-formula">km</span> east of the Pacific Ocean), in November 2018. The
measurements were based on surface energy balance (SEB) stations and airborne
observations. Additionally, we simulate the meteorological conditions on a
regional scale using the Weather Research and Forecasting Model. Our findings
show two evaporation regimes: (1) a morning regime controlled by local
conditions, in which SEB is dominated by the ground heat flux (<span class="inline-formula">∼0.5</span> of
net radiation), very low evaporation (<span class="inline-formula"><i>L</i><sub><i>v</i></sub><i>E</i><30</span> <span class="inline-formula">W m<sup>−2</sup></span>) and wind speed <span class="inline-formula"><1</span> <span class="inline-formula">m s<sup>−1</sup></span>; and (2) an afternoon regime controlled by
regional-scale forcing that leads to a sudden increase in wind speed (<span class="inline-formula">>15</span> <span class="inline-formula">m s<sup>−1</sup></span>) and a jump in evaporation to <span class="inline-formula">>500</span> <span class="inline-formula">W m<sup>−2</sup></span>. While in the morning evaporation is limited by very
low turbulence (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi>u</mi><mo>*</mo></msup><mo>∼</mo><mn mathvariant="normal">0.1</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="40pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="8e070312c3b1887bd0a2e14c5e273ff9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-9125-2021-ie00001.svg" width="40pt" height="11pt" src="acp-21-9125-2021-ie00001.png"/></svg:svg></span></span> <span class="inline-formula">m s<sup>−1</sup></span>), in the afternoon strong
winds (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi>u</mi><mo>*</mo></msup><mo>∼</mo><mn mathvariant="normal">0.65</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="a4765698574557daa47492956badf195"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-9125-2021-ie00002.svg" width="46pt" height="11pt" src="acp-21-9125-2021-ie00002.png"/></svg:svg></span></span> <span class="inline-formula">m s<sup>−1</sup></span>) enhance mechanical turbulence,
increasing evaporation. We find that the strong winds in addition to the
locally available radiative energy are the principal drivers of
evaporation. These winds are the result of a diurnal cyclic circulation
between the Pacific Ocean and the Atacama Desert. Finally, we quantify the
advection and entrainment of free-tropospheric air masses driven by
boundary layer development. Our research contributes to untangling and linking
local- and regional-scale processes driving evaporation across confined saline
lakes in arid regions.</p> |
first_indexed | 2024-12-22T02:41:10Z |
format | Article |
id | doaj.art-868eda40839d4be1ad6e8e3f9fd82218 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-22T02:41:10Z |
publishDate | 2021-06-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-868eda40839d4be1ad6e8e3f9fd822182022-12-21T18:41:37ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242021-06-01219125915010.5194/acp-21-9125-2021Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama DesertF. Lobos-Roco0F. Lobos-Roco1F. Lobos-Roco2O. Hartogensis3J. Vilà-Guerau de Arellano4A. de la Fuente5R. Muñoz6J. Rutllant7J. Rutllant8F. Suárez9F. Suárez10F. Suárez11Meteorology and Air Quality, Wageningen University, Wageningen, the NetherlandsDepartment of Hydraulic and Environmental Engineering, Pontificia Universidad Católica de Chile, Santiago, ChileInvited contribution by Felipe Lobos-Roco, recipient of the EGU Atmospheric Sciences Outstanding Student Poster and PICO Award 2019. Meteorology and Air Quality, Wageningen University, Wageningen, the NetherlandsMeteorology and Air Quality, Wageningen University, Wageningen, the NetherlandsDepartment of Civil Engineering, Universidad de Chile, Santiago, ChileDepartment of Geophysics, Universidad de Chile, Santiago, ChileDepartment of Geophysics, Universidad de Chile, Santiago, ChileCentro de Estudios Avanzados en Zonas Áridas, La Serena, ChileDepartment of Hydraulic and Environmental Engineering, Pontificia Universidad Católica de Chile, Santiago, ChileCentro de Desarrollo Urbano Sustentable (CEDEUS), Santiago, ChileCentro de Excelencia en Geotermia de los Andes (CEGA), Santiago, Chile<p>We investigate the influence of regional atmospheric circulation on the evaporation of a saline lake in the Altiplano (also known as the Andean Plateau) region of the Atacama Desert. For that, we conducted a field experiment in the Salar del Huasco (SDH) basin (135 <span class="inline-formula">km</span> east of the Pacific Ocean), in November 2018. The measurements were based on surface energy balance (SEB) stations and airborne observations. Additionally, we simulate the meteorological conditions on a regional scale using the Weather Research and Forecasting Model. Our findings show two evaporation regimes: (1) a morning regime controlled by local conditions, in which SEB is dominated by the ground heat flux (<span class="inline-formula">∼0.5</span> of net radiation), very low evaporation (<span class="inline-formula"><i>L</i><sub><i>v</i></sub><i>E</i><30</span> <span class="inline-formula">W m<sup>−2</sup></span>) and wind speed <span class="inline-formula"><1</span> <span class="inline-formula">m s<sup>−1</sup></span>; and (2) an afternoon regime controlled by regional-scale forcing that leads to a sudden increase in wind speed (<span class="inline-formula">>15</span> <span class="inline-formula">m s<sup>−1</sup></span>) and a jump in evaporation to <span class="inline-formula">>500</span> <span class="inline-formula">W m<sup>−2</sup></span>. While in the morning evaporation is limited by very low turbulence (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi>u</mi><mo>*</mo></msup><mo>∼</mo><mn mathvariant="normal">0.1</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="40pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="8e070312c3b1887bd0a2e14c5e273ff9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-9125-2021-ie00001.svg" width="40pt" height="11pt" src="acp-21-9125-2021-ie00001.png"/></svg:svg></span></span> <span class="inline-formula">m s<sup>−1</sup></span>), in the afternoon strong winds (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi>u</mi><mo>*</mo></msup><mo>∼</mo><mn mathvariant="normal">0.65</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="a4765698574557daa47492956badf195"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-9125-2021-ie00002.svg" width="46pt" height="11pt" src="acp-21-9125-2021-ie00002.png"/></svg:svg></span></span> <span class="inline-formula">m s<sup>−1</sup></span>) enhance mechanical turbulence, increasing evaporation. We find that the strong winds in addition to the locally available radiative energy are the principal drivers of evaporation. These winds are the result of a diurnal cyclic circulation between the Pacific Ocean and the Atacama Desert. Finally, we quantify the advection and entrainment of free-tropospheric air masses driven by boundary layer development. Our research contributes to untangling and linking local- and regional-scale processes driving evaporation across confined saline lakes in arid regions.</p>https://acp.copernicus.org/articles/21/9125/2021/acp-21-9125-2021.pdf |
spellingShingle | F. Lobos-Roco F. Lobos-Roco F. Lobos-Roco O. Hartogensis J. Vilà-Guerau de Arellano A. de la Fuente R. Muñoz J. Rutllant J. Rutllant F. Suárez F. Suárez F. Suárez Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert Atmospheric Chemistry and Physics |
title | Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert |
title_full | Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert |
title_fullStr | Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert |
title_full_unstemmed | Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert |
title_short | Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert |
title_sort | local evaporation controlled by regional atmospheric circulation in the altiplano of the atacama desert |
url | https://acp.copernicus.org/articles/21/9125/2021/acp-21-9125-2021.pdf |
work_keys_str_mv | AT flobosroco localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert AT flobosroco localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert AT flobosroco localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert AT ohartogensis localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert AT jvilagueraudearellano localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert AT adelafuente localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert AT rmunoz localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert AT jrutllant localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert AT jrutllant localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert AT fsuarez localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert AT fsuarez localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert AT fsuarez localevaporationcontrolledbyregionalatmosphericcirculationinthealtiplanooftheatacamadesert |