Electromagnetic shielding properties of LPBF produced Fe2.9wt.%Si alloy

Ferromagnetic materials are used in various applications such as rotating electrical machines, wind turbines, electromagnetic shielding, transformers, and electromagnets. Compared to hard magnetic materials, their hysteresis cycles are featured by low values of coercive magnetic field and high perme...

Full description

Bibliographic Details
Main Authors: Michele Quercio, Francesco Galbusera, Aldo Canova, Ali Gökhan Demir, Giambattista Gruosso, Barbara Previtali
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:JPhys Energy
Subjects:
Online Access:https://doi.org/10.1088/2515-7655/ace92f
Description
Summary:Ferromagnetic materials are used in various applications such as rotating electrical machines, wind turbines, electromagnetic shielding, transformers, and electromagnets. Compared to hard magnetic materials, their hysteresis cycles are featured by low values of coercive magnetic field and high permeability. The application of additive manufacturing to ferromagnetic materials is gaining more and more attraction. Indeed, thanks to a wider geometrical freedom, new topological optimized shapes for stator/rotor shapes can be addressed to enhance electric machines performances. However, the properties of the laser powder bed fusion (LPBF) processed alloy compared to conventionally produced counterpart must be still addressed. Accordingly, this paper presents for the first time the use of the LPBF for the manufacturing of Fe2.9wt.%Si electromagnetic shields. The process parameter selection material microstructure and the magnetic shielding factor are characterized.
ISSN:2515-7655