Plasma depletion layer: the role of the slow mode waves

The plasma depletion layer (PDL) is a layer on the sunward side of the magnetopause with lower plasma density and higher magnetic field compared to their corresponding values in the upstream magnetosheath. The depletion layer usually occurs during northward (IMF) conditions with low magne...

Full description

Bibliographic Details
Main Authors: Y. L. Wang, J. Raeder, C. T. Russell
Format: Article
Language:English
Published: Copernicus Publications 2004-12-01
Series:Annales Geophysicae
Online Access:https://www.ann-geophys.net/22/4259/2004/angeo-22-4259-2004.pdf
_version_ 1818163552949633024
author Y. L. Wang
J. Raeder
C. T. Russell
author_facet Y. L. Wang
J. Raeder
C. T. Russell
author_sort Y. L. Wang
collection DOAJ
description The plasma depletion layer (PDL) is a layer on the sunward side of the magnetopause with lower plasma density and higher magnetic field compared to their corresponding values in the upstream magnetosheath. The depletion layer usually occurs during northward (IMF) conditions with low magnetic shear across the magnetopause. We have previously validated the Raeder global model by comparing the computed formation of a magnetosheath density depletion with in-situ observations. We also have performed a detailed force analysis and found the varying roles that different MHD forces play along the path of a plasma parcel flowing around the magnetopause. That study resulted in a new description of the behavior of magnetosheath magnetic flux tubes which better explains the plasma depletion along a flux tube. The slow mode waves have been observed in the magnetosheath and have been used to explain the formation of the PDL in some of the important PDL models. In this study, we extend our former work by investigating the possible role of the slow mode waves for the formation of the PDL, using global MHD model simulations. We propose a new technique to test where a possible slow mode front may occur in the magnetosheath by comparing the slow mode group velocity with the local flow velocity. We find that the slow mode fronts can exist in certain regions in the magnetosheath under certain solar wind conditions. The existence and location of such fronts clearly depend on the IMF. We do not see from our global simulation results either the sharpening of the slow mode front into a slow mode shock or noticeable changes of the flow and field in the magnetosheath across the slow mode front, which implies that the slow mode front is not likely responsible for the formation of the PDL, at least for the stable solar wind conditions used in these simulations. Also, we do not see the two-layered slow mode structures shown in some observations and proposed in certain PDL models. Instead, we see only a one-layered spatial PDL structure under the stable solar wind conditions used in this study.
first_indexed 2024-12-11T16:51:23Z
format Article
id doaj.art-869284bdfdfe4ac1b951cd9fa2c6d2e4
institution Directory Open Access Journal
issn 0992-7689
1432-0576
language English
last_indexed 2024-12-11T16:51:23Z
publishDate 2004-12-01
publisher Copernicus Publications
record_format Article
series Annales Geophysicae
spelling doaj.art-869284bdfdfe4ac1b951cd9fa2c6d2e42022-12-22T00:58:05ZengCopernicus PublicationsAnnales Geophysicae0992-76891432-05762004-12-01224259427210.5194/angeo-22-4259-2004Plasma depletion layer: the role of the slow mode wavesY. L. Wang0J. Raeder1C. T. Russell2Los Alamos National Laboratory, Los Alamos, USAUniversity of New Hampshire, Durham, USAUniversity of California, Los Angeles, USAThe plasma depletion layer (PDL) is a layer on the sunward side of the magnetopause with lower plasma density and higher magnetic field compared to their corresponding values in the upstream magnetosheath. The depletion layer usually occurs during northward (IMF) conditions with low magnetic shear across the magnetopause. We have previously validated the Raeder global model by comparing the computed formation of a magnetosheath density depletion with in-situ observations. We also have performed a detailed force analysis and found the varying roles that different MHD forces play along the path of a plasma parcel flowing around the magnetopause. That study resulted in a new description of the behavior of magnetosheath magnetic flux tubes which better explains the plasma depletion along a flux tube. The slow mode waves have been observed in the magnetosheath and have been used to explain the formation of the PDL in some of the important PDL models. In this study, we extend our former work by investigating the possible role of the slow mode waves for the formation of the PDL, using global MHD model simulations. We propose a new technique to test where a possible slow mode front may occur in the magnetosheath by comparing the slow mode group velocity with the local flow velocity. We find that the slow mode fronts can exist in certain regions in the magnetosheath under certain solar wind conditions. The existence and location of such fronts clearly depend on the IMF. We do not see from our global simulation results either the sharpening of the slow mode front into a slow mode shock or noticeable changes of the flow and field in the magnetosheath across the slow mode front, which implies that the slow mode front is not likely responsible for the formation of the PDL, at least for the stable solar wind conditions used in these simulations. Also, we do not see the two-layered slow mode structures shown in some observations and proposed in certain PDL models. Instead, we see only a one-layered spatial PDL structure under the stable solar wind conditions used in this study.https://www.ann-geophys.net/22/4259/2004/angeo-22-4259-2004.pdf
spellingShingle Y. L. Wang
J. Raeder
C. T. Russell
Plasma depletion layer: the role of the slow mode waves
Annales Geophysicae
title Plasma depletion layer: the role of the slow mode waves
title_full Plasma depletion layer: the role of the slow mode waves
title_fullStr Plasma depletion layer: the role of the slow mode waves
title_full_unstemmed Plasma depletion layer: the role of the slow mode waves
title_short Plasma depletion layer: the role of the slow mode waves
title_sort plasma depletion layer the role of the slow mode waves
url https://www.ann-geophys.net/22/4259/2004/angeo-22-4259-2004.pdf
work_keys_str_mv AT ylwang plasmadepletionlayertheroleoftheslowmodewaves
AT jraeder plasmadepletionlayertheroleoftheslowmodewaves
AT ctrussell plasmadepletionlayertheroleoftheslowmodewaves