Dynamic Satellite Seascapes as a Biogeographic Framework for Understanding Phytoplankton Assemblages in the Florida Keys National Marine Sanctuary, United States
Physical, chemical, geological, and biological factors interact in marine environments to shape complex but recurrent patterns of organization of life on multiple spatial and temporal scales. These factors define biogeographic regions in surface waters that we refer to as seascapes. We characterize...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2020-07-01
|
Series: | Frontiers in Marine Science |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fmars.2020.00575/full |
_version_ | 1819061595777531904 |
---|---|
author | Enrique Montes Anni Djurhuus Frank E. Muller-Karger Daniel Otis Christopher R. Kelble Maria T. Kavanaugh |
author_facet | Enrique Montes Anni Djurhuus Frank E. Muller-Karger Daniel Otis Christopher R. Kelble Maria T. Kavanaugh |
author_sort | Enrique Montes |
collection | DOAJ |
description | Physical, chemical, geological, and biological factors interact in marine environments to shape complex but recurrent patterns of organization of life on multiple spatial and temporal scales. These factors define biogeographic regions in surface waters that we refer to as seascapes. We characterize seascapes for the Florida Keys National Marine Sanctuary (FKNMS) and southwest Florida shelf nearshore environment using multivariate satellite and in situ measurements of Essential Ocean Variables (EOVs) and Essential Biodiversity Variables (EBVs). The study focuses on three periods that cover separate oceanographic expeditions (March 11–18, May 9–13, and September 12–19, 2016). We collected observations on bio-optical parameters (particulate and dissolved spectral absorption coefficients), phytoplankton community composition, and hydrography from a ship. Phytoplankton community composition was evaluated using (1) chemotaxonomic analysis (CHEMTAX) based on high-performance liquid chromatography (HPLC) pigment measurements, and (2) analysis of spectral phytoplankton absorption coefficients (aphy). Dynamic seascapes were derived by combining satellite time series of sea surface temperature, chlorophyll-a concentration, and normalized fluorescent line height (nFLH) using a supervised thematic classification. The seascapes identified areas of different salinity and nutrient concentrations where different phytoplankton communities were present as determined by hierarchical cluster analyses of HPLC pigments and aphy spectra. Oligotrophic, Mesotrophic, and Transition seascape classes of deeper offshore waters were dominated by small phytoplankton (<2 μm; ∼ 40–60% of total cell abundance). In eutrophic, optically shallow coastal seascapes influenced by fresh water discharge, the phytoplankton was dominated by larger taxa (>60%). Spectral analysis of aphy indicated higher absorption levels at 492 and 550 nm wavelengths in seascapes carrying predominantly small phytoplankton than in classes dominated by larger taxa. Seascapes carrying large phytoplankton showed absorption peaks at the 673 nm wavelength. The seascape framework promises to be a tool to detect different biogeographic domains quickly, providing information about the changing environmental conditions experienced by coral reef organisms including coral, sponges, fish, and higher trophic levels. The effort illustrates best practices developed under the Marine Biodiversity Observation Network (MBON) demonstration project, in collaboration with the South Florida Ecosystem Restoration Research (SFER) project managed by the Atlantic Oceanographic and Meteorological Laboratory of NOAA (AOML-NOAA). |
first_indexed | 2024-12-21T14:45:23Z |
format | Article |
id | doaj.art-86a23e8db87241538d5255b579eae238 |
institution | Directory Open Access Journal |
issn | 2296-7745 |
language | English |
last_indexed | 2024-12-21T14:45:23Z |
publishDate | 2020-07-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Marine Science |
spelling | doaj.art-86a23e8db87241538d5255b579eae2382022-12-21T19:00:02ZengFrontiers Media S.A.Frontiers in Marine Science2296-77452020-07-01710.3389/fmars.2020.00575521324Dynamic Satellite Seascapes as a Biogeographic Framework for Understanding Phytoplankton Assemblages in the Florida Keys National Marine Sanctuary, United StatesEnrique Montes0Anni Djurhuus1Frank E. Muller-Karger2Daniel Otis3Christopher R. Kelble4Maria T. Kavanaugh5College of Marine Science, University of South Florida, St. Petersburg, St. Petersburg, FL, United StatesDepartment of Science and Technology, University of the Faroe Islands, Tórshavn, Faroe IslandsCollege of Marine Science, University of South Florida, St. Petersburg, St. Petersburg, FL, United StatesCollege of Marine Science, University of South Florida, St. Petersburg, St. Petersburg, FL, United StatesOcean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, United StatesCollege of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United StatesPhysical, chemical, geological, and biological factors interact in marine environments to shape complex but recurrent patterns of organization of life on multiple spatial and temporal scales. These factors define biogeographic regions in surface waters that we refer to as seascapes. We characterize seascapes for the Florida Keys National Marine Sanctuary (FKNMS) and southwest Florida shelf nearshore environment using multivariate satellite and in situ measurements of Essential Ocean Variables (EOVs) and Essential Biodiversity Variables (EBVs). The study focuses on three periods that cover separate oceanographic expeditions (March 11–18, May 9–13, and September 12–19, 2016). We collected observations on bio-optical parameters (particulate and dissolved spectral absorption coefficients), phytoplankton community composition, and hydrography from a ship. Phytoplankton community composition was evaluated using (1) chemotaxonomic analysis (CHEMTAX) based on high-performance liquid chromatography (HPLC) pigment measurements, and (2) analysis of spectral phytoplankton absorption coefficients (aphy). Dynamic seascapes were derived by combining satellite time series of sea surface temperature, chlorophyll-a concentration, and normalized fluorescent line height (nFLH) using a supervised thematic classification. The seascapes identified areas of different salinity and nutrient concentrations where different phytoplankton communities were present as determined by hierarchical cluster analyses of HPLC pigments and aphy spectra. Oligotrophic, Mesotrophic, and Transition seascape classes of deeper offshore waters were dominated by small phytoplankton (<2 μm; ∼ 40–60% of total cell abundance). In eutrophic, optically shallow coastal seascapes influenced by fresh water discharge, the phytoplankton was dominated by larger taxa (>60%). Spectral analysis of aphy indicated higher absorption levels at 492 and 550 nm wavelengths in seascapes carrying predominantly small phytoplankton than in classes dominated by larger taxa. Seascapes carrying large phytoplankton showed absorption peaks at the 673 nm wavelength. The seascape framework promises to be a tool to detect different biogeographic domains quickly, providing information about the changing environmental conditions experienced by coral reef organisms including coral, sponges, fish, and higher trophic levels. The effort illustrates best practices developed under the Marine Biodiversity Observation Network (MBON) demonstration project, in collaboration with the South Florida Ecosystem Restoration Research (SFER) project managed by the Atlantic Oceanographic and Meteorological Laboratory of NOAA (AOML-NOAA).https://www.frontiersin.org/article/10.3389/fmars.2020.00575/fullMarine Biodiversity Observation NetworkFlorida Keys National Marine Sanctuarybiogeographic seascapesphytoplankton functional typesphytoplankton pigment analysisHPLC |
spellingShingle | Enrique Montes Anni Djurhuus Frank E. Muller-Karger Daniel Otis Christopher R. Kelble Maria T. Kavanaugh Dynamic Satellite Seascapes as a Biogeographic Framework for Understanding Phytoplankton Assemblages in the Florida Keys National Marine Sanctuary, United States Frontiers in Marine Science Marine Biodiversity Observation Network Florida Keys National Marine Sanctuary biogeographic seascapes phytoplankton functional types phytoplankton pigment analysis HPLC |
title | Dynamic Satellite Seascapes as a Biogeographic Framework for Understanding Phytoplankton Assemblages in the Florida Keys National Marine Sanctuary, United States |
title_full | Dynamic Satellite Seascapes as a Biogeographic Framework for Understanding Phytoplankton Assemblages in the Florida Keys National Marine Sanctuary, United States |
title_fullStr | Dynamic Satellite Seascapes as a Biogeographic Framework for Understanding Phytoplankton Assemblages in the Florida Keys National Marine Sanctuary, United States |
title_full_unstemmed | Dynamic Satellite Seascapes as a Biogeographic Framework for Understanding Phytoplankton Assemblages in the Florida Keys National Marine Sanctuary, United States |
title_short | Dynamic Satellite Seascapes as a Biogeographic Framework for Understanding Phytoplankton Assemblages in the Florida Keys National Marine Sanctuary, United States |
title_sort | dynamic satellite seascapes as a biogeographic framework for understanding phytoplankton assemblages in the florida keys national marine sanctuary united states |
topic | Marine Biodiversity Observation Network Florida Keys National Marine Sanctuary biogeographic seascapes phytoplankton functional types phytoplankton pigment analysis HPLC |
url | https://www.frontiersin.org/article/10.3389/fmars.2020.00575/full |
work_keys_str_mv | AT enriquemontes dynamicsatelliteseascapesasabiogeographicframeworkforunderstandingphytoplanktonassemblagesinthefloridakeysnationalmarinesanctuaryunitedstates AT annidjurhuus dynamicsatelliteseascapesasabiogeographicframeworkforunderstandingphytoplanktonassemblagesinthefloridakeysnationalmarinesanctuaryunitedstates AT frankemullerkarger dynamicsatelliteseascapesasabiogeographicframeworkforunderstandingphytoplanktonassemblagesinthefloridakeysnationalmarinesanctuaryunitedstates AT danielotis dynamicsatelliteseascapesasabiogeographicframeworkforunderstandingphytoplanktonassemblagesinthefloridakeysnationalmarinesanctuaryunitedstates AT christopherrkelble dynamicsatelliteseascapesasabiogeographicframeworkforunderstandingphytoplanktonassemblagesinthefloridakeysnationalmarinesanctuaryunitedstates AT mariatkavanaugh dynamicsatelliteseascapesasabiogeographicframeworkforunderstandingphytoplanktonassemblagesinthefloridakeysnationalmarinesanctuaryunitedstates |