Optimization of bioethanol production from cassava peels
The bioethanol production from waste is acquiring attraction as a strategy for increasing energy security. This study aims to optimize the production of ethanol from cassava peel using Box Bhenken experimental design. The total carbohydrate content of about 90% in cassava peel was subjected to enzy...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Joint Coordination Centre of the World Bank assisted National Agricultural Research Programme (NARP)
2021-02-01
|
Series: | Journal of Applied Sciences and Environmental Management |
Subjects: | |
Online Access: | https://www.ajol.info/index.php/jasem/article/view/203968 |
_version_ | 1797228106911580160 |
---|---|
author | S.O. Osemwengie E.I. Osagie B. Onwukwe |
author_facet | S.O. Osemwengie E.I. Osagie B. Onwukwe |
author_sort | S.O. Osemwengie |
collection | DOAJ |
description |
The bioethanol production from waste is acquiring attraction as a strategy for increasing energy security. This study aims to optimize the production of ethanol from cassava peel using Box Bhenken experimental design. The total carbohydrate content of about 90% in cassava peel was subjected to enzymatic hydrolysis using Alpha-amylase followed by Simultaneous Saccharification and Fermentation (SSF) by Saccharomyces cerevisiae for bioethanol production. The production of bioethanol from cassava peels was investigated for 1-4 hours (hydrolysis time), 0.5–1.5mg/L (enzyme loading), and 1-5 days (incubation time). A statistical model was developed and validated to predict the yield of bioethanol after fermentation, and the Response Surface Methodology (RSM) was used to optimize the conditions. The results revealed that the maximum ethanol yield of 1.911% was obtained at the optimum hydrolysis time, enzyme loading, and incubation time (i.e. 2.5 hours, 1 mg/L, and 3 days respectively).
|
first_indexed | 2024-04-24T14:51:26Z |
format | Article |
id | doaj.art-86ad1c95917b472a90cb4cae2c54f1d0 |
institution | Directory Open Access Journal |
issn | 2659-1502 2659-1499 |
language | English |
last_indexed | 2024-04-24T14:51:26Z |
publishDate | 2021-02-01 |
publisher | Joint Coordination Centre of the World Bank assisted National Agricultural Research Programme (NARP) |
record_format | Article |
series | Journal of Applied Sciences and Environmental Management |
spelling | doaj.art-86ad1c95917b472a90cb4cae2c54f1d02024-04-02T19:48:38ZengJoint Coordination Centre of the World Bank assisted National Agricultural Research Programme (NARP)Journal of Applied Sciences and Environmental Management2659-15022659-14992021-02-01241210.4314/jasem.v24i12.11Optimization of bioethanol production from cassava peelsS.O. OsemwengieE.I. OsagieB. Onwukwe The bioethanol production from waste is acquiring attraction as a strategy for increasing energy security. This study aims to optimize the production of ethanol from cassava peel using Box Bhenken experimental design. The total carbohydrate content of about 90% in cassava peel was subjected to enzymatic hydrolysis using Alpha-amylase followed by Simultaneous Saccharification and Fermentation (SSF) by Saccharomyces cerevisiae for bioethanol production. The production of bioethanol from cassava peels was investigated for 1-4 hours (hydrolysis time), 0.5–1.5mg/L (enzyme loading), and 1-5 days (incubation time). A statistical model was developed and validated to predict the yield of bioethanol after fermentation, and the Response Surface Methodology (RSM) was used to optimize the conditions. The results revealed that the maximum ethanol yield of 1.911% was obtained at the optimum hydrolysis time, enzyme loading, and incubation time (i.e. 2.5 hours, 1 mg/L, and 3 days respectively). https://www.ajol.info/index.php/jasem/article/view/203968cassava peeloptimizationbioethanolmodelling |
spellingShingle | S.O. Osemwengie E.I. Osagie B. Onwukwe Optimization of bioethanol production from cassava peels Journal of Applied Sciences and Environmental Management cassava peel optimization bioethanol modelling |
title | Optimization of bioethanol production from cassava peels |
title_full | Optimization of bioethanol production from cassava peels |
title_fullStr | Optimization of bioethanol production from cassava peels |
title_full_unstemmed | Optimization of bioethanol production from cassava peels |
title_short | Optimization of bioethanol production from cassava peels |
title_sort | optimization of bioethanol production from cassava peels |
topic | cassava peel optimization bioethanol modelling |
url | https://www.ajol.info/index.php/jasem/article/view/203968 |
work_keys_str_mv | AT soosemwengie optimizationofbioethanolproductionfromcassavapeels AT eiosagie optimizationofbioethanolproductionfromcassavapeels AT bonwukwe optimizationofbioethanolproductionfromcassavapeels |