On graded weakly $ J_{gr} $-semiprime submodules

Let $ \Gamma $ be a group, $ \mathcal{A} $ be a $ \Gamma $-graded commutative ring with unity $ 1, $ and $ \mathcal{D} $ a graded $ \mathcal{A} $-module. In this paper, we introduce the concept of graded weakly $ J_{gr} $-semiprime submodules as a generalization of graded weakly semiprime submodules...

Full description

Bibliographic Details
Main Authors: Malak Alnimer, Khaldoun Al-Zoubi, Mohammed Al-Dolat
Format: Article
Language:English
Published: AIMS Press 2024-03-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2024602?viewType=HTML
_version_ 1797206052356227072
author Malak Alnimer
Khaldoun Al-Zoubi
Mohammed Al-Dolat
author_facet Malak Alnimer
Khaldoun Al-Zoubi
Mohammed Al-Dolat
author_sort Malak Alnimer
collection DOAJ
description Let $ \Gamma $ be a group, $ \mathcal{A} $ be a $ \Gamma $-graded commutative ring with unity $ 1, $ and $ \mathcal{D} $ a graded $ \mathcal{A} $-module. In this paper, we introduce the concept of graded weakly $ J_{gr} $-semiprime submodules as a generalization of graded weakly semiprime submodules. We study several results concerning of graded weakly $ J_{gr} $ -semiprime submodules. For example, we give a characterization of graded weakly $ J_{gr} $-semiprime submodules. Also, we find some relations between graded weakly $ J_{gr} $-semiprime submodules and graded weakly semiprime submodules. In addition, the necessary and sufficient condition for graded submodules to be graded weakly $ J_{gr} $-semiprime submodules are investigated. A proper graded submodule $ U $ of $ \mathcal{D} $ is said to be a graded weakly $ J_{gr} $-semiprime submodule of $ \mathcal{D} $ if whenever $ r_{g}\in h(\mathcal{A}), $ $ m_{h}\in h(\mathcal{D}) $ and $ n\in \mathbb{Z} ^{+} $ with $ 0\neq r_{g}^{n}m_{h}\in U $, then $ r_{g}m_{h}\in U+J_{gr}(\mathcal{D}) $, where $ J_{gr}(\mathcal{D}) $ is the graded Jacobson radical of $ \mathcal{D}. $
first_indexed 2024-04-24T09:00:53Z
format Article
id doaj.art-86b192e5de3a48fa8c7d97b842328e2c
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-04-24T09:00:53Z
publishDate 2024-03-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-86b192e5de3a48fa8c7d97b842328e2c2024-04-16T01:15:12ZengAIMS PressAIMS Mathematics2473-69882024-03-0195123151232210.3934/math.2024602On graded weakly $ J_{gr} $-semiprime submodulesMalak Alnimer 0Khaldoun Al-Zoubi1Mohammed Al-Dolat2Department of Mathematics and Statistics, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, JordanDepartment of Mathematics and Statistics, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, JordanDepartment of Mathematics and Statistics, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, JordanLet $ \Gamma $ be a group, $ \mathcal{A} $ be a $ \Gamma $-graded commutative ring with unity $ 1, $ and $ \mathcal{D} $ a graded $ \mathcal{A} $-module. In this paper, we introduce the concept of graded weakly $ J_{gr} $-semiprime submodules as a generalization of graded weakly semiprime submodules. We study several results concerning of graded weakly $ J_{gr} $ -semiprime submodules. For example, we give a characterization of graded weakly $ J_{gr} $-semiprime submodules. Also, we find some relations between graded weakly $ J_{gr} $-semiprime submodules and graded weakly semiprime submodules. In addition, the necessary and sufficient condition for graded submodules to be graded weakly $ J_{gr} $-semiprime submodules are investigated. A proper graded submodule $ U $ of $ \mathcal{D} $ is said to be a graded weakly $ J_{gr} $-semiprime submodule of $ \mathcal{D} $ if whenever $ r_{g}\in h(\mathcal{A}), $ $ m_{h}\in h(\mathcal{D}) $ and $ n\in \mathbb{Z} ^{+} $ with $ 0\neq r_{g}^{n}m_{h}\in U $, then $ r_{g}m_{h}\in U+J_{gr}(\mathcal{D}) $, where $ J_{gr}(\mathcal{D}) $ is the graded Jacobson radical of $ \mathcal{D}. $https://www.aimspress.com/article/doi/10.3934/math.2024602?viewType=HTMLgraded weakly $ j_{gr} $-semiprime submodulegraded $ j_{gr} $-semiprime submodulegraded weakly semiprime submodule
spellingShingle Malak Alnimer
Khaldoun Al-Zoubi
Mohammed Al-Dolat
On graded weakly $ J_{gr} $-semiprime submodules
AIMS Mathematics
graded weakly $ j_{gr} $-semiprime submodule
graded $ j_{gr} $-semiprime submodule
graded weakly semiprime submodule
title On graded weakly $ J_{gr} $-semiprime submodules
title_full On graded weakly $ J_{gr} $-semiprime submodules
title_fullStr On graded weakly $ J_{gr} $-semiprime submodules
title_full_unstemmed On graded weakly $ J_{gr} $-semiprime submodules
title_short On graded weakly $ J_{gr} $-semiprime submodules
title_sort on graded weakly j gr semiprime submodules
topic graded weakly $ j_{gr} $-semiprime submodule
graded $ j_{gr} $-semiprime submodule
graded weakly semiprime submodule
url https://www.aimspress.com/article/doi/10.3934/math.2024602?viewType=HTML
work_keys_str_mv AT malakalnimer ongradedweaklyjgrsemiprimesubmodules
AT khaldounalzoubi ongradedweaklyjgrsemiprimesubmodules
AT mohammedaldolat ongradedweaklyjgrsemiprimesubmodules