ECG Signal Features Classification for the Mental Fatigue Recognition
Mental fatigue is a major public health issue worldwide that is common among both healthy and sick people. In the literature, various modern technologies, together with artificial intelligence techniques, have been proposed. Most techniques consider complex biosignals, such as electroencephalogram,...
Автори: | Eglė Butkevičiūtė, Aleksėjus Michalkovič, Liepa Bikulčienė |
---|---|
Формат: | Стаття |
Мова: | English |
Опубліковано: |
MDPI AG
2022-09-01
|
Серія: | Mathematics |
Предмети: | |
Онлайн доступ: | https://www.mdpi.com/2227-7390/10/18/3395 |
Схожі ресурси
Схожі ресурси
-
The investigation of physiological data using the theory of complex systems
за авторством: Liepa Bikulčienė, та інші
Опубліковано: (2015-12-01) -
ECG Signal Processing and Automatic Classification Algorithms
за авторством: Xiaonuo Yang, та інші
Опубліковано: (2024-09-01) -
Classification of mental workload based on multiple features of ECG signals
за авторством: Hongquan Qu, та інші
Опубліковано: (2021-01-01) -
ECG Signals Classification using Statistical and Time-Frequency Features
за авторством: Cristina STOLOJESCU
Опубліковано: (2012-03-01) -
Arrhythmia Recognition and Classification Using Combined Parametric and Visual Pattern Features of ECG Morphology
за авторством: Hui Yang, та інші
Опубліковано: (2020-01-01)