Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shifts
Large scale quantum computing motivates the invention of two-qubit gate schemes that not only maximize the gate fidelity but also draw minimal resources. In the case of superconducting qubits, the weak anharmonicity of transmons imposes profound constraints on the gate design, leading to increased c...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2022-04-01
|
Series: | Physical Review Research |
Online Access: | http://doi.org/10.1103/PhysRevResearch.4.023040 |
_version_ | 1797210799125561344 |
---|---|
author | Haonan Xiong Quentin Ficheux Aaron Somoroff Long B. Nguyen Ebru Dogan Dario Rosenstock Chen Wang Konstantin N. Nesterov Maxim G. Vavilov Vladimir E. Manucharyan |
author_facet | Haonan Xiong Quentin Ficheux Aaron Somoroff Long B. Nguyen Ebru Dogan Dario Rosenstock Chen Wang Konstantin N. Nesterov Maxim G. Vavilov Vladimir E. Manucharyan |
author_sort | Haonan Xiong |
collection | DOAJ |
description | Large scale quantum computing motivates the invention of two-qubit gate schemes that not only maximize the gate fidelity but also draw minimal resources. In the case of superconducting qubits, the weak anharmonicity of transmons imposes profound constraints on the gate design, leading to increased complexity of devices and control protocols. Here we demonstrate a resource-efficient control over the interaction of strongly-anharmonic fluxonium qubits. Namely, applying an off-resonant drive to noncomputational transitions in a pair of capacitively-coupled fluxoniums induces a ZZ interaction due to unequal ac Stark shifts of the computational levels. With a continuous choice of frequency and amplitude, the drive can either cancel the static ZZ term or increase it by an order of magnitude to enable a controlled-phase (CP) gate with an arbitrary programmed phase shift. The cross-entropy benchmarking of these non-Clifford operations yields a sub 1% error, limited solely by incoherent processes. Our result demonstrates the advantages of strongly-anharmonic circuits over transmons in designing the next generation of quantum processors. |
first_indexed | 2024-04-24T10:16:20Z |
format | Article |
id | doaj.art-86e298d465e9467db044df66c10ffff9 |
institution | Directory Open Access Journal |
issn | 2643-1564 |
language | English |
last_indexed | 2024-04-24T10:16:20Z |
publishDate | 2022-04-01 |
publisher | American Physical Society |
record_format | Article |
series | Physical Review Research |
spelling | doaj.art-86e298d465e9467db044df66c10ffff92024-04-12T17:19:55ZengAmerican Physical SocietyPhysical Review Research2643-15642022-04-014202304010.1103/PhysRevResearch.4.023040Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shiftsHaonan XiongQuentin FicheuxAaron SomoroffLong B. NguyenEbru DoganDario RosenstockChen WangKonstantin N. NesterovMaxim G. VavilovVladimir E. ManucharyanLarge scale quantum computing motivates the invention of two-qubit gate schemes that not only maximize the gate fidelity but also draw minimal resources. In the case of superconducting qubits, the weak anharmonicity of transmons imposes profound constraints on the gate design, leading to increased complexity of devices and control protocols. Here we demonstrate a resource-efficient control over the interaction of strongly-anharmonic fluxonium qubits. Namely, applying an off-resonant drive to noncomputational transitions in a pair of capacitively-coupled fluxoniums induces a ZZ interaction due to unequal ac Stark shifts of the computational levels. With a continuous choice of frequency and amplitude, the drive can either cancel the static ZZ term or increase it by an order of magnitude to enable a controlled-phase (CP) gate with an arbitrary programmed phase shift. The cross-entropy benchmarking of these non-Clifford operations yields a sub 1% error, limited solely by incoherent processes. Our result demonstrates the advantages of strongly-anharmonic circuits over transmons in designing the next generation of quantum processors.http://doi.org/10.1103/PhysRevResearch.4.023040 |
spellingShingle | Haonan Xiong Quentin Ficheux Aaron Somoroff Long B. Nguyen Ebru Dogan Dario Rosenstock Chen Wang Konstantin N. Nesterov Maxim G. Vavilov Vladimir E. Manucharyan Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shifts Physical Review Research |
title | Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shifts |
title_full | Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shifts |
title_fullStr | Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shifts |
title_full_unstemmed | Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shifts |
title_short | Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shifts |
title_sort | arbitrary controlled phase gate on fluxonium qubits using differential ac stark shifts |
url | http://doi.org/10.1103/PhysRevResearch.4.023040 |
work_keys_str_mv | AT haonanxiong arbitrarycontrolledphasegateonfluxoniumqubitsusingdifferentialacstarkshifts AT quentinficheux arbitrarycontrolledphasegateonfluxoniumqubitsusingdifferentialacstarkshifts AT aaronsomoroff arbitrarycontrolledphasegateonfluxoniumqubitsusingdifferentialacstarkshifts AT longbnguyen arbitrarycontrolledphasegateonfluxoniumqubitsusingdifferentialacstarkshifts AT ebrudogan arbitrarycontrolledphasegateonfluxoniumqubitsusingdifferentialacstarkshifts AT dariorosenstock arbitrarycontrolledphasegateonfluxoniumqubitsusingdifferentialacstarkshifts AT chenwang arbitrarycontrolledphasegateonfluxoniumqubitsusingdifferentialacstarkshifts AT konstantinnnesterov arbitrarycontrolledphasegateonfluxoniumqubitsusingdifferentialacstarkshifts AT maximgvavilov arbitrarycontrolledphasegateonfluxoniumqubitsusingdifferentialacstarkshifts AT vladimiremanucharyan arbitrarycontrolledphasegateonfluxoniumqubitsusingdifferentialacstarkshifts |