Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shifts

Large scale quantum computing motivates the invention of two-qubit gate schemes that not only maximize the gate fidelity but also draw minimal resources. In the case of superconducting qubits, the weak anharmonicity of transmons imposes profound constraints on the gate design, leading to increased c...

Full description

Bibliographic Details
Main Authors: Haonan Xiong, Quentin Ficheux, Aaron Somoroff, Long B. Nguyen, Ebru Dogan, Dario Rosenstock, Chen Wang, Konstantin N. Nesterov, Maxim G. Vavilov, Vladimir E. Manucharyan
Format: Article
Language:English
Published: American Physical Society 2022-04-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.4.023040
_version_ 1797210799125561344
author Haonan Xiong
Quentin Ficheux
Aaron Somoroff
Long B. Nguyen
Ebru Dogan
Dario Rosenstock
Chen Wang
Konstantin N. Nesterov
Maxim G. Vavilov
Vladimir E. Manucharyan
author_facet Haonan Xiong
Quentin Ficheux
Aaron Somoroff
Long B. Nguyen
Ebru Dogan
Dario Rosenstock
Chen Wang
Konstantin N. Nesterov
Maxim G. Vavilov
Vladimir E. Manucharyan
author_sort Haonan Xiong
collection DOAJ
description Large scale quantum computing motivates the invention of two-qubit gate schemes that not only maximize the gate fidelity but also draw minimal resources. In the case of superconducting qubits, the weak anharmonicity of transmons imposes profound constraints on the gate design, leading to increased complexity of devices and control protocols. Here we demonstrate a resource-efficient control over the interaction of strongly-anharmonic fluxonium qubits. Namely, applying an off-resonant drive to noncomputational transitions in a pair of capacitively-coupled fluxoniums induces a ZZ interaction due to unequal ac Stark shifts of the computational levels. With a continuous choice of frequency and amplitude, the drive can either cancel the static ZZ term or increase it by an order of magnitude to enable a controlled-phase (CP) gate with an arbitrary programmed phase shift. The cross-entropy benchmarking of these non-Clifford operations yields a sub 1% error, limited solely by incoherent processes. Our result demonstrates the advantages of strongly-anharmonic circuits over transmons in designing the next generation of quantum processors.
first_indexed 2024-04-24T10:16:20Z
format Article
id doaj.art-86e298d465e9467db044df66c10ffff9
institution Directory Open Access Journal
issn 2643-1564
language English
last_indexed 2024-04-24T10:16:20Z
publishDate 2022-04-01
publisher American Physical Society
record_format Article
series Physical Review Research
spelling doaj.art-86e298d465e9467db044df66c10ffff92024-04-12T17:19:55ZengAmerican Physical SocietyPhysical Review Research2643-15642022-04-014202304010.1103/PhysRevResearch.4.023040Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shiftsHaonan XiongQuentin FicheuxAaron SomoroffLong B. NguyenEbru DoganDario RosenstockChen WangKonstantin N. NesterovMaxim G. VavilovVladimir E. ManucharyanLarge scale quantum computing motivates the invention of two-qubit gate schemes that not only maximize the gate fidelity but also draw minimal resources. In the case of superconducting qubits, the weak anharmonicity of transmons imposes profound constraints on the gate design, leading to increased complexity of devices and control protocols. Here we demonstrate a resource-efficient control over the interaction of strongly-anharmonic fluxonium qubits. Namely, applying an off-resonant drive to noncomputational transitions in a pair of capacitively-coupled fluxoniums induces a ZZ interaction due to unequal ac Stark shifts of the computational levels. With a continuous choice of frequency and amplitude, the drive can either cancel the static ZZ term or increase it by an order of magnitude to enable a controlled-phase (CP) gate with an arbitrary programmed phase shift. The cross-entropy benchmarking of these non-Clifford operations yields a sub 1% error, limited solely by incoherent processes. Our result demonstrates the advantages of strongly-anharmonic circuits over transmons in designing the next generation of quantum processors.http://doi.org/10.1103/PhysRevResearch.4.023040
spellingShingle Haonan Xiong
Quentin Ficheux
Aaron Somoroff
Long B. Nguyen
Ebru Dogan
Dario Rosenstock
Chen Wang
Konstantin N. Nesterov
Maxim G. Vavilov
Vladimir E. Manucharyan
Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shifts
Physical Review Research
title Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shifts
title_full Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shifts
title_fullStr Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shifts
title_full_unstemmed Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shifts
title_short Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shifts
title_sort arbitrary controlled phase gate on fluxonium qubits using differential ac stark shifts
url http://doi.org/10.1103/PhysRevResearch.4.023040
work_keys_str_mv AT haonanxiong arbitrarycontrolledphasegateonfluxoniumqubitsusingdifferentialacstarkshifts
AT quentinficheux arbitrarycontrolledphasegateonfluxoniumqubitsusingdifferentialacstarkshifts
AT aaronsomoroff arbitrarycontrolledphasegateonfluxoniumqubitsusingdifferentialacstarkshifts
AT longbnguyen arbitrarycontrolledphasegateonfluxoniumqubitsusingdifferentialacstarkshifts
AT ebrudogan arbitrarycontrolledphasegateonfluxoniumqubitsusingdifferentialacstarkshifts
AT dariorosenstock arbitrarycontrolledphasegateonfluxoniumqubitsusingdifferentialacstarkshifts
AT chenwang arbitrarycontrolledphasegateonfluxoniumqubitsusingdifferentialacstarkshifts
AT konstantinnnesterov arbitrarycontrolledphasegateonfluxoniumqubitsusingdifferentialacstarkshifts
AT maximgvavilov arbitrarycontrolledphasegateonfluxoniumqubitsusingdifferentialacstarkshifts
AT vladimiremanucharyan arbitrarycontrolledphasegateonfluxoniumqubitsusingdifferentialacstarkshifts