On the Kinetic Energy Driven Superconductivity in the Two-Dimensional Hubbard Model

We investigate the role of kinetic energy for the stability of superconducting state in the two-dimensional Hubbard model on the basis of an optimization variational Monte Carlo method. The wave function is optimized by multiplying by correlation operators of site off-diagonal type. This wave functi...

Full description

Bibliographic Details
Main Authors: Takashi Yanagisawa, Kunihiko Yamaji, Mitake Miyazaki
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Condensed Matter
Subjects:
Online Access:https://www.mdpi.com/2410-3896/6/1/12
_version_ 1797395106944253952
author Takashi Yanagisawa
Kunihiko Yamaji
Mitake Miyazaki
author_facet Takashi Yanagisawa
Kunihiko Yamaji
Mitake Miyazaki
author_sort Takashi Yanagisawa
collection DOAJ
description We investigate the role of kinetic energy for the stability of superconducting state in the two-dimensional Hubbard model on the basis of an optimization variational Monte Carlo method. The wave function is optimized by multiplying by correlation operators of site off-diagonal type. This wave function is written in an exponential-type form given as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ψ</mi><mi>λ</mi></msub><mo>=</mo><mo form="prefix">exp</mo><mrow><mo>(</mo><mo>−</mo><mi>λ</mi><mi>K</mi><mo>)</mo></mrow><msub><mi>ψ</mi><mi>G</mi></msub></mrow></semantics></math></inline-formula> for the Gutzwiller wave function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ψ</mi><mi>G</mi></msub></semantics></math></inline-formula> and a kinetic operator <i>K</i>. The kinetic correlation operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">exp</mo><mo>(</mo><mo>−</mo><mi>λ</mi><mi>K</mi><mo>)</mo></mrow></semantics></math></inline-formula> plays an important role in the emergence of superconductivity in large-<i>U</i> region of the two-dimensional Hubbard model, where <i>U</i> is the on-site Coulomb repulsive interaction. We show that the superconducting condensation energy mainly originates from the kinetic energy in the strongly correlated region. This may indicate a possibility of high-temperature superconductivity due to the kinetic energy effect in correlated electron systems.
first_indexed 2024-03-09T00:29:34Z
format Article
id doaj.art-86e66f8c88f14fefbdf40ceb37c26a52
institution Directory Open Access Journal
issn 2410-3896
language English
last_indexed 2024-03-09T00:29:34Z
publishDate 2021-02-01
publisher MDPI AG
record_format Article
series Condensed Matter
spelling doaj.art-86e66f8c88f14fefbdf40ceb37c26a522023-12-11T18:36:03ZengMDPI AGCondensed Matter2410-38962021-02-01611210.3390/condmat6010012On the Kinetic Energy Driven Superconductivity in the Two-Dimensional Hubbard ModelTakashi Yanagisawa0Kunihiko Yamaji1Mitake Miyazaki2National Institute of Advanced Industrial Science and Technology 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, JapanHakodate Institute of Technology, 14-1 Tokura, Hakodate, Hokkaido 042-8501, JapanNational Institute of Advanced Industrial Science and Technology 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, JapanWe investigate the role of kinetic energy for the stability of superconducting state in the two-dimensional Hubbard model on the basis of an optimization variational Monte Carlo method. The wave function is optimized by multiplying by correlation operators of site off-diagonal type. This wave function is written in an exponential-type form given as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ψ</mi><mi>λ</mi></msub><mo>=</mo><mo form="prefix">exp</mo><mrow><mo>(</mo><mo>−</mo><mi>λ</mi><mi>K</mi><mo>)</mo></mrow><msub><mi>ψ</mi><mi>G</mi></msub></mrow></semantics></math></inline-formula> for the Gutzwiller wave function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ψ</mi><mi>G</mi></msub></semantics></math></inline-formula> and a kinetic operator <i>K</i>. The kinetic correlation operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">exp</mo><mo>(</mo><mo>−</mo><mi>λ</mi><mi>K</mi><mo>)</mo></mrow></semantics></math></inline-formula> plays an important role in the emergence of superconductivity in large-<i>U</i> region of the two-dimensional Hubbard model, where <i>U</i> is the on-site Coulomb repulsive interaction. We show that the superconducting condensation energy mainly originates from the kinetic energy in the strongly correlated region. This may indicate a possibility of high-temperature superconductivity due to the kinetic energy effect in correlated electron systems.https://www.mdpi.com/2410-3896/6/1/12strongly correlated electronsmechanism of superconductivityhigh-temperature superconductortwo-dimensional Hubbard modeloptimization variational Monte Carlo methodHubbard model
spellingShingle Takashi Yanagisawa
Kunihiko Yamaji
Mitake Miyazaki
On the Kinetic Energy Driven Superconductivity in the Two-Dimensional Hubbard Model
Condensed Matter
strongly correlated electrons
mechanism of superconductivity
high-temperature superconductor
two-dimensional Hubbard model
optimization variational Monte Carlo method
Hubbard model
title On the Kinetic Energy Driven Superconductivity in the Two-Dimensional Hubbard Model
title_full On the Kinetic Energy Driven Superconductivity in the Two-Dimensional Hubbard Model
title_fullStr On the Kinetic Energy Driven Superconductivity in the Two-Dimensional Hubbard Model
title_full_unstemmed On the Kinetic Energy Driven Superconductivity in the Two-Dimensional Hubbard Model
title_short On the Kinetic Energy Driven Superconductivity in the Two-Dimensional Hubbard Model
title_sort on the kinetic energy driven superconductivity in the two dimensional hubbard model
topic strongly correlated electrons
mechanism of superconductivity
high-temperature superconductor
two-dimensional Hubbard model
optimization variational Monte Carlo method
Hubbard model
url https://www.mdpi.com/2410-3896/6/1/12
work_keys_str_mv AT takashiyanagisawa onthekineticenergydrivensuperconductivityinthetwodimensionalhubbardmodel
AT kunihikoyamaji onthekineticenergydrivensuperconductivityinthetwodimensionalhubbardmodel
AT mitakemiyazaki onthekineticenergydrivensuperconductivityinthetwodimensionalhubbardmodel