Summary: | Climate change plays a pivotal role in the hydrological dynamics of tributaries in the upper Blue Nile basin. The understanding of the change in climate and its impact on water resource is of paramount importance to sustainable water resources management. This study was designed to reveal the extent to which the climate is being changed and its impacts on stream flow of the Gumara watershed under the Representative Concentration Pathway (RCP) climate change scenarios. The study considered the RCP 2.6, RCP 4.5, and RCP 8.5 scenarios using the second-generation Canadian Earth System Model (CanESM2). The Statistical Downscaling Model (SDSM) was used for calibration and projection of future climatic data of the study area. Soil and Water Assessment Tool (SWAT) model was used for simulation of the future stream flow of the watershed. Results showed that the average temperature will be increasing by 0.84 °C, 2.6 °C, and 4.1 °C in the end of this century under RCP 2.6, RCP 4.5, and RCP 8.5 scenarios, respectively. The change in monthly rainfall amount showed a fluctuating trend in all scenarios but the overall annual rainfall amount is projected to increase by 8.6%, 5.2%, and 7.3% in RCP 2.6, RCP 4.5, and RCP 8.5, respectively. The change in stream flow of Gumara watershed under RCP 2.6, RCP 4.5, and RCP 8.5 scenarios showed increasing trend in monthly average values in some months and years, but a decreasing trend was also observed in some years of the studied period. Overall, this study revealed that, due to climate change, the stream flow of the watershed is found to be increasing by 4.06%, 3.26%, and 3.67%under RCP 2.6, RCP 4.5, and RCP 8.5 scenarios, respectively.
|