Drought stress revealed physiological, biochemical and gene-expressional variations in ‘Yoshihime’ peach (Prunus Persica L) cultivar

It is indispensable to comprehend the mechanism that regulates plant responses to drought conditions to intensify the water use efficiency of stone fruits. The physiological, biochemical and molecular responses of drought-treated peach leaves were investigated. Results revealed that drought-treated...

Full description

Bibliographic Details
Main Authors: Muhammad S. Haider, Mahantesh M. Kurjogi, Muhammad Khalil-ur-Rehman, Tariq Pervez, Jiu Songtao, Muhammad Fiaz, Sudisha Jogaiah, Chen Wang, Jinggui Fang
Format: Article
Language:English
Published: Taylor & Francis Group 2018-01-01
Series:Journal of Plant Interactions
Subjects:
Online Access:http://dx.doi.org/10.1080/17429145.2018.1432772
Description
Summary:It is indispensable to comprehend the mechanism that regulates plant responses to drought conditions to intensify the water use efficiency of stone fruits. The physiological, biochemical and molecular responses of drought-treated peach leaves were investigated. Results revealed that drought-treated plants manifested a significant attenuation in water potential as compared to control plants. Furthermore, sorbitol and proline contents were accumulated contrary to glucose, fructose, and sucrose that were dwindled significantly throughout the drought period. Similarly, the activities of antioxidant enzymes and expression pattern of related genes were hoisted to counter the lipid peroxidation in drought-treated plants. Moreover, reduced stomatal conductance has repressed the photosynthesis process and linked genes during drought stress. The expression level of regulatory genes (dehydration-responsive element-bindings and WRKYs) exhibited up-regulation in the drought-treated group. Overall, this study asserts that ‘Yoshihime’ peach cultivar possesses unique physiological, biochemical, and molecular responses under different spells of drought stress.
ISSN:1742-9145
1742-9153