Airborne observations of peroxy radicals during the EMeRGe campaign in Europe

<p>In this study, airborne measurements of the sum of hydroperoxyl (<span class="inline-formula">HO<sub>2</sub></span>) and organic peroxy (<span class="inline-formula">RO<sub>2</sub></span>) radicals that react with nitrogen...

Full description

Bibliographic Details
Main Authors: M. George, M. D. Andrés Hernández, V. Nenakhov, Y. Liu, J. P. Burrows, B. Bohn, E. Förster, F. Obersteiner, A. Zahn, T. Harlaß, H. Ziereis, H. Schlager, B. Schreiner, F. Kluge, K. Bigge, K. Pfeilsticker
Format: Article
Language:English
Published: Copernicus Publications 2023-07-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/23/7799/2023/acp-23-7799-2023.pdf
Description
Summary:<p>In this study, airborne measurements of the sum of hydroperoxyl (<span class="inline-formula">HO<sub>2</sub></span>) and organic peroxy (<span class="inline-formula">RO<sub>2</sub></span>) radicals that react with nitrogen monoxide (NO) to produce nitrogen dioxide (<span class="inline-formula">NO<sub>2</sub></span>), coupled with actinometry and other key trace gases measurements, have been used to test the current understanding of the fast photochemistry in the outflow of major population centres. The measurements were made during the airborne campaign of the EMeRGe (Effect of Megacities on the transport and transformation of pollutants on the Regional to Global scales) project in Europe on board the High Altitude and Long Range Research Aircraft (HALO). The measurements of RO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mo>∗</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="7pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="fd4a150ed7fc0e56f6ccb122f99fad19"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7799-2023-ie00001.svg" width="7pt" height="14pt" src="acp-23-7799-2023-ie00001.png"/></svg:svg></span></span> on HALO were made using the in situ instrument Peroxy Radical Chemical Enhancement and Absorption Spectrometer (PeRCEAS). RO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mo>∗</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="7pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="dc715b30bb4b2971849cf622a92fb972"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7799-2023-ie00002.svg" width="7pt" height="14pt" src="acp-23-7799-2023-ie00002.png"/></svg:svg></span></span> is to a good approximation the sum of peroxy radicals reacting with NO to produce <span class="inline-formula">NO<sub>2</sub></span>. RO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mo>∗</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="7pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="935d4c0fecd64115e8392d3800193226"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7799-2023-ie00003.svg" width="7pt" height="14pt" src="acp-23-7799-2023-ie00003.png"/></svg:svg></span></span> mixing ratios up to 120 pptv were observed in air masses of different origins and composition under different local actinometric conditions during seven HALO research flights in July 2017 over Europe.</p> <p>Radical production rates were estimated using knowledge of the photolysis frequencies and the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">RO</mi><mn mathvariant="normal">2</mn><mo>∗</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="90f0d3a735c442370932468183b20a0c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7799-2023-ie00004.svg" width="23pt" height="14pt" src="acp-23-7799-2023-ie00004.png"/></svg:svg></span></span> precursor concentrations measured on board, as well as the relevant rate coefficients. Generally, high <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">RO</mi><mn mathvariant="normal">2</mn><mo>∗</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="5ad9b05d81fe95b177981272e8e72d4f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7799-2023-ie00005.svg" width="23pt" height="14pt" src="acp-23-7799-2023-ie00005.png"/></svg:svg></span></span> concentrations were measured in air masses with high production rates. In the air masses investigated, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">RO</mi><mn mathvariant="normal">2</mn><mo>∗</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="29774666fa07d0130d6c3e173b51d104"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7799-2023-ie00006.svg" width="23pt" height="14pt" src="acp-23-7799-2023-ie00006.png"/></svg:svg></span></span> is primarily produced by the reaction of O<span class="inline-formula"><sup>1</sup></span>D with water vapour and the photolysis of nitrous acid (HONO) and of the oxygenated volatile organic compounds (OVOCs, e.g. formaldehyde (HCHO) and glyoxal (CHOCHO)). Due to their short lifetime in most environments, the RO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mo>∗</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="7pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="f69ba1e67fd7490011f8dc70772617c8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7799-2023-ie00007.svg" width="7pt" height="14pt" src="acp-23-7799-2023-ie00007.png"/></svg:svg></span></span> concentrations are expected to be in a photostationary steady state (PSS), i.e. a balance between production and loss rates is assumed. The <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">RO</mi><mn mathvariant="normal">2</mn><mo>∗</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="3c652b72f8bc010245d5be5a33c051f5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7799-2023-ie00008.svg" width="23pt" height="14pt" src="acp-23-7799-2023-ie00008.png"/></svg:svg></span></span> production and loss rates and the suitability of PSS assumptions to estimate the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">RO</mi><mn mathvariant="normal">2</mn><mo>∗</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="534989f86575c5fc292ccd2f645e4276"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7799-2023-ie00009.svg" width="23pt" height="14pt" src="acp-23-7799-2023-ie00009.png"/></svg:svg></span></span> mixing ratios and variability during the airborne observations are discussed. The PSS assumption for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">RO</mi><mn mathvariant="normal">2</mn><mo>∗</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="3f5f98d409b58bbdca81231a9925f388"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7799-2023-ie00010.svg" width="23pt" height="14pt" src="acp-23-7799-2023-ie00010.png"/></svg:svg></span></span> is considered robust enough to calculate <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">RO</mi><mn mathvariant="normal">2</mn><mo>∗</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="a51f955c63512163fd7e6ba00146b54c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7799-2023-ie00011.svg" width="23pt" height="14pt" src="acp-23-7799-2023-ie00011.png"/></svg:svg></span></span> mixing ratios for most conditions encountered in the air masses measured. The similarities and discrepancies between measured and PSS calculated <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">RO</mi><mn mathvariant="normal">2</mn><mo>∗</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="f486b3871ba3e547a77b15c8ecc5e6ed"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7799-2023-ie00012.svg" width="23pt" height="14pt" src="acp-23-7799-2023-ie00012.png"/></svg:svg></span></span> mixing ratios are discussed. The dominant terminating processes for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">RO</mi><mn mathvariant="normal">2</mn><mo>∗</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="f1272cb2e619b08efea0c17bb672e7bd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7799-2023-ie00013.svg" width="23pt" height="14pt" src="acp-23-7799-2023-ie00013.png"/></svg:svg></span></span> in the pollution plumes measured up to 2000 m are the formation of nitrous acid, nitric acid, and organic nitrates. Above 2000 m, <span class="inline-formula">HO<sub>2</sub></span>–<span class="inline-formula">HO<sub>2</sub></span> and <span class="inline-formula">HO<sub>2</sub></span>–<span class="inline-formula">RO<sub>2</sub></span> reactions dominate the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M23" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">RO</mi><mn mathvariant="normal">2</mn><mo>∗</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="4b21409fb721dd8d6083a08cb5969439"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7799-2023-ie00014.svg" width="23pt" height="14pt" src="acp-23-7799-2023-ie00014.png"/></svg:svg></span></span> removal. <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M24" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">RO</mi><mn mathvariant="normal">2</mn><mo>∗</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d40a64dc053d84b0d57e7a1ac43c7d75"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7799-2023-ie00015.svg" width="23pt" height="14pt" src="acp-23-7799-2023-ie00015.png"/></svg:svg></span></span> calculations by the PSS analytical<span id="page7800"/> expression inside the pollution plumes probed often underestimated the measurements. The underestimation is attributed to the limitations of the PSS equation used for the analysis. In particular, this expression does not account for the yields of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M25" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">RO</mi><mn mathvariant="normal">2</mn><mo>∗</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="75b17a135f9c377d1630bf5a1c20ce98"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7799-2023-ie00016.svg" width="23pt" height="14pt" src="acp-23-7799-2023-ie00016.png"/></svg:svg></span></span> from the oxidation and photolysis of volatile organic compounds, VOCs, and OVOCs other than those measured during the EMeRGe research flights in Europe. In air masses with NO mixing ratios <span class="inline-formula">≤50</span> pptv and low <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M27" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">VOC</mi><mo>/</mo><mi mathvariant="normal">NO</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="48pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="9e5dd82552b18a5be00b4afd1355323b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7799-2023-ie00017.svg" width="48pt" height="14pt" src="acp-23-7799-2023-ie00017.png"/></svg:svg></span></span> ratios, the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M28" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">RO</mi><mn mathvariant="normal">2</mn><mo>∗</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="13fb75362b4a332622a92b075d869218"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-23-7799-2023-ie00018.svg" width="23pt" height="14pt" src="acp-23-7799-2023-ie00018.png"/></svg:svg></span></span> measured is overestimated by the analytical expression. This may be caused by the formation of H<span class="inline-formula"><sub>2</sub></span>O and O<span class="inline-formula"><sub>2</sub></span> from OH and <span class="inline-formula">HO<sub>2</sub></span>, being about 4 times faster than the rate of the OH oxidation reaction of the dominant OVOCs considered.</p>
ISSN:1680-7316
1680-7324