Neural network reconstructions for the Hubble parameter, growth rate and distance modulus

Abstract This paper introduces a new approach to reconstruct cosmological functions using artificial neural networks based on observational measurements with minimal theoretical and statistical assumptions. By using neural networks, we can generate computational models of observational datasets, and...

Full description

Bibliographic Details
Main Authors: Isidro Gómez-Vargas, Ricardo Medel-Esquivel, Ricardo García-Salcedo, J. Alberto Vázquez
Format: Article
Language:English
Published: SpringerOpen 2023-04-01
Series:European Physical Journal C: Particles and Fields
Online Access:https://doi.org/10.1140/epjc/s10052-023-11435-9
_version_ 1827943254979510272
author Isidro Gómez-Vargas
Ricardo Medel-Esquivel
Ricardo García-Salcedo
J. Alberto Vázquez
author_facet Isidro Gómez-Vargas
Ricardo Medel-Esquivel
Ricardo García-Salcedo
J. Alberto Vázquez
author_sort Isidro Gómez-Vargas
collection DOAJ
description Abstract This paper introduces a new approach to reconstruct cosmological functions using artificial neural networks based on observational measurements with minimal theoretical and statistical assumptions. By using neural networks, we can generate computational models of observational datasets, and then we compare them with the original ones to verify the consistency of our method. This methodology is applicable to even small-size datasets. In particular, we test the proposed method with data coming from cosmic chronometers, $$f\sigma _8$$ f σ 8 measurements, and the distance modulus of the Type Ia supernovae. Furthermore, we introduce a first approach to generate synthetic covariance matrices through a variational autoencoder, using the systematic covariance matrix of the Type Ia supernova compilation.
first_indexed 2024-03-13T10:12:40Z
format Article
id doaj.art-8703003c1174414c8a08fa7b968d0048
institution Directory Open Access Journal
issn 1434-6052
language English
last_indexed 2024-03-13T10:12:40Z
publishDate 2023-04-01
publisher SpringerOpen
record_format Article
series European Physical Journal C: Particles and Fields
spelling doaj.art-8703003c1174414c8a08fa7b968d00482023-05-21T11:24:57ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60522023-04-0183411810.1140/epjc/s10052-023-11435-9Neural network reconstructions for the Hubble parameter, growth rate and distance modulusIsidro Gómez-Vargas0Ricardo Medel-Esquivel1Ricardo García-Salcedo2J. Alberto Vázquez3ICF, Universidad Nacional Autónoma de MéxicoICF, Universidad Nacional Autónoma de MéxicoCICATA-Legaria, Instituto Politécnico NacionalICF, Universidad Nacional Autónoma de MéxicoAbstract This paper introduces a new approach to reconstruct cosmological functions using artificial neural networks based on observational measurements with minimal theoretical and statistical assumptions. By using neural networks, we can generate computational models of observational datasets, and then we compare them with the original ones to verify the consistency of our method. This methodology is applicable to even small-size datasets. In particular, we test the proposed method with data coming from cosmic chronometers, $$f\sigma _8$$ f σ 8 measurements, and the distance modulus of the Type Ia supernovae. Furthermore, we introduce a first approach to generate synthetic covariance matrices through a variational autoencoder, using the systematic covariance matrix of the Type Ia supernova compilation.https://doi.org/10.1140/epjc/s10052-023-11435-9
spellingShingle Isidro Gómez-Vargas
Ricardo Medel-Esquivel
Ricardo García-Salcedo
J. Alberto Vázquez
Neural network reconstructions for the Hubble parameter, growth rate and distance modulus
European Physical Journal C: Particles and Fields
title Neural network reconstructions for the Hubble parameter, growth rate and distance modulus
title_full Neural network reconstructions for the Hubble parameter, growth rate and distance modulus
title_fullStr Neural network reconstructions for the Hubble parameter, growth rate and distance modulus
title_full_unstemmed Neural network reconstructions for the Hubble parameter, growth rate and distance modulus
title_short Neural network reconstructions for the Hubble parameter, growth rate and distance modulus
title_sort neural network reconstructions for the hubble parameter growth rate and distance modulus
url https://doi.org/10.1140/epjc/s10052-023-11435-9
work_keys_str_mv AT isidrogomezvargas neuralnetworkreconstructionsforthehubbleparametergrowthrateanddistancemodulus
AT ricardomedelesquivel neuralnetworkreconstructionsforthehubbleparametergrowthrateanddistancemodulus
AT ricardogarciasalcedo neuralnetworkreconstructionsforthehubbleparametergrowthrateanddistancemodulus
AT jalbertovazquez neuralnetworkreconstructionsforthehubbleparametergrowthrateanddistancemodulus