Compressed models for co-reference resolution: enhancing efficiency with debiased word embeddings

Abstract This work presents a comprehensive approach to reduce bias in word embedding vectors and evaluate the impact on various Natural Language Processing (NLP) tasks. Two GloVe variations (840B and 50) are debiased by identifying the gender direction in the word embedding space and then removing...

Descrizione completa

Dettagli Bibliografici
Autori principali: Georgios Ioannides, Aishwarya Jadhav, Aditi Sharma, Samarth Navali, Alan W. Black
Natura: Articolo
Lingua:English
Pubblicazione: Nature Portfolio 2023-10-01
Serie:Scientific Reports
Accesso online:https://doi.org/10.1038/s41598-023-45677-0