Using Deep Learning with Thermal Imaging for Human Detection in Heavy Smoke Scenarios
In this study, we propose using a thermal imaging camera (TIC) with a deep learning model as an intelligent human detection approach during emergency evacuations in a low-visibility smoky fire scenarios. We use low-wavelength infrared (LWIR) images taken by a TIC qualified with the National Fire Pro...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-07-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/22/14/5351 |
Summary: | In this study, we propose using a thermal imaging camera (TIC) with a deep learning model as an intelligent human detection approach during emergency evacuations in a low-visibility smoky fire scenarios. We use low-wavelength infrared (LWIR) images taken by a TIC qualified with the National Fire Protection Association (NFPA) 1801 standards as input to the YOLOv4 model for real-time object detection. The model trained with a single Nvidia GeForce 2070 can achieve >95% precision for the location of people in a low-visibility smoky scenario with 30.1 frames per second (FPS). This real-time result can be reported to control centers as useful information to help provide timely rescue and provide protection to firefighters before entering dangerous smoky fire situations. |
---|---|
ISSN: | 1424-8220 |