Quasi-Double Diagonally Dominant <inline-formula><math display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>-Tensors and the Estimation Inequalities for the Spectral Radius of Nonnegative Tensors

In this paper, we study two classes of quasi-double diagonally dominant tensors and prove they are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics>...

Full description

Bibliographic Details
Main Authors: Xincun Wang, Hongbin Lv
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/2/439
Description
Summary:In this paper, we study two classes of quasi-double diagonally dominant tensors and prove they are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>-tensors. Numerical examples show that two classes of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>-tensors are mutually exclusive. Thus, we extend the decision conditions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>-tensors. Based on these two classes of tensors, two estimation inequalities for the upper and lower bounds for the spectral radius of nonnegative tensors are obtained.
ISSN:2073-8994