A sandwiched patch toward leakage-free and anti-postoperative tissue adhesion sealing of intestinal injuries

Ideal repair of intestinal injury requires a combination of leakage-free sealing and postoperative antiadhesion. However, neither conventional hand-sewn closures nor existing bioglues/patches can achieve such a combination. To this end, we develop a sandwiched patch composed of an inner adhesive and...

Full description

Bibliographic Details
Main Authors: Wei Yang, Chengkai Xuan, Xuemin Liu, Qiang Zhang, Kai Wu, Liming Bian, Xuetao Shi
Format: Article
Language:English
Published: KeAi Communications Co., Ltd. 2023-06-01
Series:Bioactive Materials
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2452199X22004911
Description
Summary:Ideal repair of intestinal injury requires a combination of leakage-free sealing and postoperative antiadhesion. However, neither conventional hand-sewn closures nor existing bioglues/patches can achieve such a combination. To this end, we develop a sandwiched patch composed of an inner adhesive and an outer antiadhesive layer that are topologically linked together through a reinforced interlayer. The inner adhesive layer tightly and instantly adheres to the wound sites via -NHS chemistry; the outer antiadhesive layer can inhibit cell and protein fouling based on the zwitterion structure; and the interlayer enhances the bulk resilience of the patch under excessive deformation. This complementary trilayer patch (TLP) possesses a unique combination of instant wet adhesion, high mechanical strength, and biological inertness. Both rat and pig models demonstrate that the sandwiched TLP can effectively seal intestinal injuries and inhibit undesired postoperative tissue adhesion. The study provides valuable insight into the design of multifunctional bioadhesives to enhance the treatment efficacy of intestinal injuries.
ISSN:2452-199X