A 0.3 V, Rail-to-Rail, Ultralow-Power, Non-Tailed, Body-Driven, Sub-Threshold Amplifier

A novel, inverter-based, fully differential, body-driven, rail-to-rail, input stage topology is proposed in this paper. The input stage exploits a replica bias control loop to set the common mode current and a common mode feed-forward strategy to set its output common mode voltage. This novel cell i...

Full description

Bibliographic Details
Main Authors: Francesco Centurelli, Riccardo Della Sala, Giuseppe Scotti, Alessandro Trifiletti
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/6/2528
Description
Summary:A novel, inverter-based, fully differential, body-driven, rail-to-rail, input stage topology is proposed in this paper. The input stage exploits a replica bias control loop to set the common mode current and a common mode feed-forward strategy to set its output common mode voltage. This novel cell is used to build an ultralow voltage (ULV), ultralow-power (ULP), two-stage, unbuffered operational amplifier. A dual path compensation strategy is exploited to improve the frequency response of the circuit. The amplifier has been designed in a commercial 130 nm CMOS technology from STMicroelectronics and is able to operate with a nominal supply voltage of 0.3 V and a power consumption as low as 11.4 nW, while showing about 65 dB gain, a gain bandwidth product around 3.6 kHz with a 50 pF load capacitance and a common mode rejection ratio (CMRR) in excess of 60 dB. Transistor-level simulations show that the proposed circuit outperforms most of the state of the art amplifiers in terms of the main figures of merit. The results of extensive parametric and Monte Carlo simulations have demonstrated the robustness of the proposed circuit to PVT and mismatch variations.
ISSN:2076-3417