Numerical Simulation of Ultra-Shallow Buried Large-Span Double-Arch Tunnel Excavated under an Expressway

The temporal and spatial effects of a complicated excavation process are vital for an ultra-shallow buried large-span double-arch tunnel excavated under an expressway in service. Numerical simulations are urgent and necessary to understand the effect of the total construction process. Taking Xiamen...

Full description

Bibliographic Details
Main Authors: Jianxiu Wang, Ansheng Cao, Zhao Wu, Zhipeng Sun, Xiao Lin, Lei Sun, Xiaotian Liu, Huboqiang Li, Yuanwei Sun
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/1/39
Description
Summary:The temporal and spatial effects of a complicated excavation process are vital for an ultra-shallow buried large-span double-arch tunnel excavated under an expressway in service. Numerical simulations are urgent and necessary to understand the effect of the total construction process. Taking Xiamen Haicang tunnel as a research object, the total excavation process of three pilot tunnels and the three-bench reserved core soil method of an ultra-shallow buried large-span double-arch tunnel with a fault fracture zone under an expressway was simulated using software FLAC<sup>3D</sup>. The deformation of the surface, surrounding rock, underground pipelines, tunnel support structure and partition wall of the three pilot tunnels and the main tunnel was analyzed, and the dangerous areas and time nodes were obtained. When the tunnel was excavated to the fault fracture zone, the deformation of the surface and surrounding rock increased significantly. The rock and soil within 20 m behind the excavation surface of the pilot tunnel were greatly disturbed by the excavation. During the excavation of the main tunnel, the horizontal displacement of the middle partition wall moved slightly towards the main tunnel excavated first. The research results can provide a reference for the construction design of double-arch tunnels.
ISSN:2076-3417