Assessment of graphene oxide toxicity on the growth and nutrient levels of white clover (Trifolium repens L.)

Carbon nanomaterials (CNMs) are novel engineered nanomaterials and have been used widely. Their toxic effects on terrestrial plants in soil matrix require careful investigation. In this study, white clover (Trifolium repens L.) was grown in a potted soil with graphene oxide (GO) at levels of 0.2%, 0...

Full description

Bibliographic Details
Main Authors: Shulan Zhao, Xiangui Zhu, Mengdi Mou, Ziyuan Wang, Lian Duo
Format: Article
Language:English
Published: Elsevier 2022-04-01
Series:Ecotoxicology and Environmental Safety
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0147651322002391
Description
Summary:Carbon nanomaterials (CNMs) are novel engineered nanomaterials and have been used widely. Their toxic effects on terrestrial plants in soil matrix require careful investigation. In this study, white clover (Trifolium repens L.) was grown in a potted soil with graphene oxide (GO) at levels of 0.2%, 0.4% and 0.6% and the effects of GO on the growth and nutrient uptake of white clover were evaluated after 50 and 100 days of exposure. GO exposure showed adverse effects on seedling growth, photosynthetic parameters and nutrient uptake in shoots, and the effect was more significant with increasing concentration and exposure time. Compared with the control, GO at the highest level of 0.6% decreased plant height, leaf and stem dry weights, total chlorophyll content and net photosynthetic rate by 43.7%, 45.7%, 43.4%, 32% and 85.7%, respectively, after 100 d of exposure, and N, K, Cu, Zn, Fe, Mo, B, Si contents decreased by 19.5%, 20.1%, 12.6%, 25.0%, 12.9%, 26.0%, 18.9%, 23.0%, respectively. Furthermore, the electrolyte leakage, lipid peroxidation, reactive oxygen species, antioxidant enzyme activities were all increased by GO, especially at high dose and long exposure. These results indicate that GO can suppress plant growth by oxidative stress, photosynthesis inhibition, and nutrient imbalance.
ISSN:0147-6513