Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometer

<p>The planetary boundary layer (PBL) is the lowermost region of troposphere and is endowed with turbulent characteristics, which can have mechanical and/or thermodynamic origins. This behavior gives this layer great importance, mainly in studies about pollutant dispersion and weather forecast...

Full description

Bibliographic Details
Main Authors: G. de Arruda Moreira, J. L. Guerrero-Rascado, J. A. Benavent-Oltra, P. Ortiz-Amezcua, R. Román, A. E. Bedoya-Velásquez, J. A. Bravo-Aranda, F. J. Olmo Reyes, E. Landulfo, L. Alados-Arboledas
Format: Article
Language:English
Published: Copernicus Publications 2019-01-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/19/1263/2019/acp-19-1263-2019.pdf
_version_ 1818265640479227904
author G. de Arruda Moreira
G. de Arruda Moreira
G. de Arruda Moreira
J. L. Guerrero-Rascado
J. L. Guerrero-Rascado
J. A. Benavent-Oltra
J. A. Benavent-Oltra
P. Ortiz-Amezcua
P. Ortiz-Amezcua
R. Román
R. Román
R. Román
A. E. Bedoya-Velásquez
A. E. Bedoya-Velásquez
A. E. Bedoya-Velásquez
J. A. Bravo-Aranda
J. A. Bravo-Aranda
F. J. Olmo Reyes
F. J. Olmo Reyes
E. Landulfo
L. Alados-Arboledas
L. Alados-Arboledas
author_facet G. de Arruda Moreira
G. de Arruda Moreira
G. de Arruda Moreira
J. L. Guerrero-Rascado
J. L. Guerrero-Rascado
J. A. Benavent-Oltra
J. A. Benavent-Oltra
P. Ortiz-Amezcua
P. Ortiz-Amezcua
R. Román
R. Román
R. Román
A. E. Bedoya-Velásquez
A. E. Bedoya-Velásquez
A. E. Bedoya-Velásquez
J. A. Bravo-Aranda
J. A. Bravo-Aranda
F. J. Olmo Reyes
F. J. Olmo Reyes
E. Landulfo
L. Alados-Arboledas
L. Alados-Arboledas
author_sort G. de Arruda Moreira
collection DOAJ
description <p>The planetary boundary layer (PBL) is the lowermost region of troposphere and is endowed with turbulent characteristics, which can have mechanical and/or thermodynamic origins. This behavior gives this layer great importance, mainly in studies about pollutant dispersion and weather forecasting. However, the instruments usually applied in studies of turbulence in the PBL have limitations in spatial resolution (anemometer towers) or temporal resolution (instrumentation aboard an aircraft). Ground-based remote sensing, both active and passive, offers an alternative for studying the PBL. In this study we show the capabilities of combining different remote sensing systems (microwave radiometer – MWR, Doppler lidar – DL – and elastic lidar – EL) for retrieving a detailed picture on the PBL turbulent features. The statistical moments of the high frequency distributions of the vertical wind velocity, derived from DL, and of the backscattered coefficient, derived from EL, are corrected by two methodologies, namely first lag correction and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">2</mn><mo>/</mo><mn mathvariant="normal">3</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="68a597ee0fc95fc948658c971f4eed6e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-1263-2019-ie00001.svg" width="28pt" height="14pt" src="acp-19-1263-2019-ie00001.png"/></svg:svg></span></span> law correction. The corrected profiles, obtained from DL data, present small differences when compared with the uncorrected profiles, showing the low influence of noise and the viability of the proposed methodology. Concerning EL, in addition to analyzing the influence of noise, we explore the use of different wavelengths that usually include EL systems operated in extended networks, like the European Aerosol Research Lidar Network (EARLINET), Latin American Lidar Network (LALINET), NASA Micro-Pulse Lidar Network (MPLNET) or Skyradiometer Network (SKYNET). In this way we want to show the feasibility of extending the capability of existing monitoring networks without strong investments or changes in their measurements protocols. Two case studies were analyzed in detail, one corresponding to a well-defined PBL and another corresponding to a situation with presence of a Saharan dust lofted aerosol layer and clouds. In both cases we discuss results provided by the different instruments showing their complementarity and the precautions to be applied in the data interpretation. Our study shows that the use of EL at 532&thinsp;nm requires a careful correction of the signal using the first lag time correction in order to get reliable turbulence information on the PBL.</p>
first_indexed 2024-12-12T19:54:01Z
format Article
id doaj.art-8755c7a05c9d4f42b536ab2f6571c741
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-12T19:54:01Z
publishDate 2019-01-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-8755c7a05c9d4f42b536ab2f6571c7412022-12-22T00:13:56ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-01-01191263128010.5194/acp-19-1263-2019Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometerG. de Arruda Moreira0G. de Arruda Moreira1G. de Arruda Moreira2J. L. Guerrero-Rascado3J. L. Guerrero-Rascado4J. A. Benavent-Oltra5J. A. Benavent-Oltra6P. Ortiz-Amezcua7P. Ortiz-Amezcua8R. Román9R. Román10R. Román11A. E. Bedoya-Velásquez12A. E. Bedoya-Velásquez13A. E. Bedoya-Velásquez14J. A. Bravo-Aranda15J. A. Bravo-Aranda16F. J. Olmo Reyes17F. J. Olmo Reyes18E. Landulfo19L. Alados-Arboledas20L. Alados-Arboledas21Andalusian Institute for Earth System Research (IISTA-CEAMA), Granada, SpainDepartment of Applied Physics, University of Granada, Granada, SpainInstitute of Research and Nuclear Energy (IPEN), São Paulo, BrazilAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada, SpainDepartment of Applied Physics, University of Granada, Granada, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada, SpainDepartment of Applied Physics, University of Granada, Granada, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada, SpainDepartment of Applied Physics, University of Granada, Granada, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada, SpainDepartment of Applied Physics, University of Granada, Granada, SpainGrupo de Óptica Atmosférica (GOA), Universidad de Valladolid, Valladolid, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada, SpainDepartment of Applied Physics, University of Granada, Granada, SpainSciences Faculty, Department of Physics, Universidad Nacional de Colombia, Medellín, ColombiaAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada, SpainDepartment of Applied Physics, University of Granada, Granada, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada, SpainDepartment of Applied Physics, University of Granada, Granada, SpainInstitute of Research and Nuclear Energy (IPEN), São Paulo, BrazilAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada, SpainDepartment of Applied Physics, University of Granada, Granada, Spain<p>The planetary boundary layer (PBL) is the lowermost region of troposphere and is endowed with turbulent characteristics, which can have mechanical and/or thermodynamic origins. This behavior gives this layer great importance, mainly in studies about pollutant dispersion and weather forecasting. However, the instruments usually applied in studies of turbulence in the PBL have limitations in spatial resolution (anemometer towers) or temporal resolution (instrumentation aboard an aircraft). Ground-based remote sensing, both active and passive, offers an alternative for studying the PBL. In this study we show the capabilities of combining different remote sensing systems (microwave radiometer – MWR, Doppler lidar – DL – and elastic lidar – EL) for retrieving a detailed picture on the PBL turbulent features. The statistical moments of the high frequency distributions of the vertical wind velocity, derived from DL, and of the backscattered coefficient, derived from EL, are corrected by two methodologies, namely first lag correction and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">2</mn><mo>/</mo><mn mathvariant="normal">3</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="68a597ee0fc95fc948658c971f4eed6e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-1263-2019-ie00001.svg" width="28pt" height="14pt" src="acp-19-1263-2019-ie00001.png"/></svg:svg></span></span> law correction. The corrected profiles, obtained from DL data, present small differences when compared with the uncorrected profiles, showing the low influence of noise and the viability of the proposed methodology. Concerning EL, in addition to analyzing the influence of noise, we explore the use of different wavelengths that usually include EL systems operated in extended networks, like the European Aerosol Research Lidar Network (EARLINET), Latin American Lidar Network (LALINET), NASA Micro-Pulse Lidar Network (MPLNET) or Skyradiometer Network (SKYNET). In this way we want to show the feasibility of extending the capability of existing monitoring networks without strong investments or changes in their measurements protocols. Two case studies were analyzed in detail, one corresponding to a well-defined PBL and another corresponding to a situation with presence of a Saharan dust lofted aerosol layer and clouds. In both cases we discuss results provided by the different instruments showing their complementarity and the precautions to be applied in the data interpretation. Our study shows that the use of EL at 532&thinsp;nm requires a careful correction of the signal using the first lag time correction in order to get reliable turbulence information on the PBL.</p>https://www.atmos-chem-phys.net/19/1263/2019/acp-19-1263-2019.pdf
spellingShingle G. de Arruda Moreira
G. de Arruda Moreira
G. de Arruda Moreira
J. L. Guerrero-Rascado
J. L. Guerrero-Rascado
J. A. Benavent-Oltra
J. A. Benavent-Oltra
P. Ortiz-Amezcua
P. Ortiz-Amezcua
R. Román
R. Román
R. Román
A. E. Bedoya-Velásquez
A. E. Bedoya-Velásquez
A. E. Bedoya-Velásquez
J. A. Bravo-Aranda
J. A. Bravo-Aranda
F. J. Olmo Reyes
F. J. Olmo Reyes
E. Landulfo
L. Alados-Arboledas
L. Alados-Arboledas
Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometer
Atmospheric Chemistry and Physics
title Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometer
title_full Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometer
title_fullStr Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometer
title_full_unstemmed Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometer
title_short Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometer
title_sort analyzing the turbulent planetary boundary layer by remote sensing systems the doppler wind lidar aerosol elastic lidar and microwave radiometer
url https://www.atmos-chem-phys.net/19/1263/2019/acp-19-1263-2019.pdf
work_keys_str_mv AT gdearrudamoreira analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer
AT gdearrudamoreira analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer
AT gdearrudamoreira analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer
AT jlguerrerorascado analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer
AT jlguerrerorascado analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer
AT jabenaventoltra analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer
AT jabenaventoltra analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer
AT portizamezcua analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer
AT portizamezcua analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer
AT rroman analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer
AT rroman analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer
AT rroman analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer
AT aebedoyavelasquez analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer
AT aebedoyavelasquez analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer
AT aebedoyavelasquez analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer
AT jabravoaranda analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer
AT jabravoaranda analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer
AT fjolmoreyes analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer
AT fjolmoreyes analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer
AT elandulfo analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer
AT laladosarboledas analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer
AT laladosarboledas analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer