Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometer
<p>The planetary boundary layer (PBL) is the lowermost region of troposphere and is endowed with turbulent characteristics, which can have mechanical and/or thermodynamic origins. This behavior gives this layer great importance, mainly in studies about pollutant dispersion and weather forecast...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-01-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/19/1263/2019/acp-19-1263-2019.pdf |
_version_ | 1818265640479227904 |
---|---|
author | G. de Arruda Moreira G. de Arruda Moreira G. de Arruda Moreira J. L. Guerrero-Rascado J. L. Guerrero-Rascado J. A. Benavent-Oltra J. A. Benavent-Oltra P. Ortiz-Amezcua P. Ortiz-Amezcua R. Román R. Román R. Román A. E. Bedoya-Velásquez A. E. Bedoya-Velásquez A. E. Bedoya-Velásquez J. A. Bravo-Aranda J. A. Bravo-Aranda F. J. Olmo Reyes F. J. Olmo Reyes E. Landulfo L. Alados-Arboledas L. Alados-Arboledas |
author_facet | G. de Arruda Moreira G. de Arruda Moreira G. de Arruda Moreira J. L. Guerrero-Rascado J. L. Guerrero-Rascado J. A. Benavent-Oltra J. A. Benavent-Oltra P. Ortiz-Amezcua P. Ortiz-Amezcua R. Román R. Román R. Román A. E. Bedoya-Velásquez A. E. Bedoya-Velásquez A. E. Bedoya-Velásquez J. A. Bravo-Aranda J. A. Bravo-Aranda F. J. Olmo Reyes F. J. Olmo Reyes E. Landulfo L. Alados-Arboledas L. Alados-Arboledas |
author_sort | G. de Arruda Moreira |
collection | DOAJ |
description | <p>The planetary boundary layer (PBL) is the lowermost region of troposphere
and is endowed with turbulent characteristics, which can have mechanical and/or
thermodynamic origins. This behavior gives this layer great importance,
mainly in studies about pollutant dispersion and weather forecasting.
However, the instruments usually applied in studies of turbulence in the
PBL have limitations in spatial resolution (anemometer towers) or temporal
resolution (instrumentation aboard an aircraft). Ground-based remote sensing,
both active and passive, offers an alternative for studying the PBL. In
this study we show the capabilities of combining different remote sensing
systems (microwave radiometer – MWR, Doppler lidar – DL – and elastic
lidar – EL) for retrieving a detailed picture on the PBL turbulent
features. The statistical moments of the high frequency distributions of the
vertical wind velocity, derived from DL, and of the backscattered
coefficient, derived from EL, are corrected by two methodologies, namely
first lag correction and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">2</mn><mo>/</mo><mn mathvariant="normal">3</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="68a597ee0fc95fc948658c971f4eed6e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-1263-2019-ie00001.svg" width="28pt" height="14pt" src="acp-19-1263-2019-ie00001.png"/></svg:svg></span></span> law correction. The corrected profiles, obtained from DL
data, present small differences when compared with the uncorrected
profiles, showing the low influence of noise and the viability of the
proposed methodology. Concerning EL, in addition to analyzing the influence
of noise, we explore the use of different wavelengths that usually include
EL systems operated in extended networks, like the European Aerosol Research Lidar Network (EARLINET), Latin American Lidar Network (LALINET), NASA Micro-Pulse Lidar Network
(MPLNET) or Skyradiometer Network (SKYNET). In this way we want to show the feasibility of extending the
capability of existing monitoring networks without strong investments or
changes in their measurements protocols. Two case studies were analyzed in
detail, one corresponding to a well-defined PBL and another
corresponding to a situation with presence of a Saharan dust lofted aerosol
layer and clouds. In both cases we discuss results provided by the different
instruments showing their complementarity and the precautions to be applied in
the data interpretation. Our study shows that the use of EL at 532 nm
requires a careful correction of the signal using the first lag time
correction in order to get reliable turbulence information on the PBL.</p> |
first_indexed | 2024-12-12T19:54:01Z |
format | Article |
id | doaj.art-8755c7a05c9d4f42b536ab2f6571c741 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-12T19:54:01Z |
publishDate | 2019-01-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-8755c7a05c9d4f42b536ab2f6571c7412022-12-22T00:13:56ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-01-01191263128010.5194/acp-19-1263-2019Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometerG. de Arruda Moreira0G. de Arruda Moreira1G. de Arruda Moreira2J. L. Guerrero-Rascado3J. L. Guerrero-Rascado4J. A. Benavent-Oltra5J. A. Benavent-Oltra6P. Ortiz-Amezcua7P. Ortiz-Amezcua8R. Román9R. Román10R. Román11A. E. Bedoya-Velásquez12A. E. Bedoya-Velásquez13A. E. Bedoya-Velásquez14J. A. Bravo-Aranda15J. A. Bravo-Aranda16F. J. Olmo Reyes17F. J. Olmo Reyes18E. Landulfo19L. Alados-Arboledas20L. Alados-Arboledas21Andalusian Institute for Earth System Research (IISTA-CEAMA), Granada, SpainDepartment of Applied Physics, University of Granada, Granada, SpainInstitute of Research and Nuclear Energy (IPEN), São Paulo, BrazilAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada, SpainDepartment of Applied Physics, University of Granada, Granada, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada, SpainDepartment of Applied Physics, University of Granada, Granada, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada, SpainDepartment of Applied Physics, University of Granada, Granada, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada, SpainDepartment of Applied Physics, University of Granada, Granada, SpainGrupo de Óptica Atmosférica (GOA), Universidad de Valladolid, Valladolid, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada, SpainDepartment of Applied Physics, University of Granada, Granada, SpainSciences Faculty, Department of Physics, Universidad Nacional de Colombia, Medellín, ColombiaAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada, SpainDepartment of Applied Physics, University of Granada, Granada, SpainAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada, SpainDepartment of Applied Physics, University of Granada, Granada, SpainInstitute of Research and Nuclear Energy (IPEN), São Paulo, BrazilAndalusian Institute for Earth System Research (IISTA-CEAMA), Granada, SpainDepartment of Applied Physics, University of Granada, Granada, Spain<p>The planetary boundary layer (PBL) is the lowermost region of troposphere and is endowed with turbulent characteristics, which can have mechanical and/or thermodynamic origins. This behavior gives this layer great importance, mainly in studies about pollutant dispersion and weather forecasting. However, the instruments usually applied in studies of turbulence in the PBL have limitations in spatial resolution (anemometer towers) or temporal resolution (instrumentation aboard an aircraft). Ground-based remote sensing, both active and passive, offers an alternative for studying the PBL. In this study we show the capabilities of combining different remote sensing systems (microwave radiometer – MWR, Doppler lidar – DL – and elastic lidar – EL) for retrieving a detailed picture on the PBL turbulent features. The statistical moments of the high frequency distributions of the vertical wind velocity, derived from DL, and of the backscattered coefficient, derived from EL, are corrected by two methodologies, namely first lag correction and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">2</mn><mo>/</mo><mn mathvariant="normal">3</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="68a597ee0fc95fc948658c971f4eed6e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-1263-2019-ie00001.svg" width="28pt" height="14pt" src="acp-19-1263-2019-ie00001.png"/></svg:svg></span></span> law correction. The corrected profiles, obtained from DL data, present small differences when compared with the uncorrected profiles, showing the low influence of noise and the viability of the proposed methodology. Concerning EL, in addition to analyzing the influence of noise, we explore the use of different wavelengths that usually include EL systems operated in extended networks, like the European Aerosol Research Lidar Network (EARLINET), Latin American Lidar Network (LALINET), NASA Micro-Pulse Lidar Network (MPLNET) or Skyradiometer Network (SKYNET). In this way we want to show the feasibility of extending the capability of existing monitoring networks without strong investments or changes in their measurements protocols. Two case studies were analyzed in detail, one corresponding to a well-defined PBL and another corresponding to a situation with presence of a Saharan dust lofted aerosol layer and clouds. In both cases we discuss results provided by the different instruments showing their complementarity and the precautions to be applied in the data interpretation. Our study shows that the use of EL at 532 nm requires a careful correction of the signal using the first lag time correction in order to get reliable turbulence information on the PBL.</p>https://www.atmos-chem-phys.net/19/1263/2019/acp-19-1263-2019.pdf |
spellingShingle | G. de Arruda Moreira G. de Arruda Moreira G. de Arruda Moreira J. L. Guerrero-Rascado J. L. Guerrero-Rascado J. A. Benavent-Oltra J. A. Benavent-Oltra P. Ortiz-Amezcua P. Ortiz-Amezcua R. Román R. Román R. Román A. E. Bedoya-Velásquez A. E. Bedoya-Velásquez A. E. Bedoya-Velásquez J. A. Bravo-Aranda J. A. Bravo-Aranda F. J. Olmo Reyes F. J. Olmo Reyes E. Landulfo L. Alados-Arboledas L. Alados-Arboledas Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometer Atmospheric Chemistry and Physics |
title | Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometer |
title_full | Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometer |
title_fullStr | Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometer |
title_full_unstemmed | Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometer |
title_short | Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometer |
title_sort | analyzing the turbulent planetary boundary layer by remote sensing systems the doppler wind lidar aerosol elastic lidar and microwave radiometer |
url | https://www.atmos-chem-phys.net/19/1263/2019/acp-19-1263-2019.pdf |
work_keys_str_mv | AT gdearrudamoreira analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer AT gdearrudamoreira analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer AT gdearrudamoreira analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer AT jlguerrerorascado analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer AT jlguerrerorascado analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer AT jabenaventoltra analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer AT jabenaventoltra analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer AT portizamezcua analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer AT portizamezcua analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer AT rroman analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer AT rroman analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer AT rroman analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer AT aebedoyavelasquez analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer AT aebedoyavelasquez analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer AT aebedoyavelasquez analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer AT jabravoaranda analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer AT jabravoaranda analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer AT fjolmoreyes analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer AT fjolmoreyes analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer AT elandulfo analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer AT laladosarboledas analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer AT laladosarboledas analyzingtheturbulentplanetaryboundarylayerbyremotesensingsystemsthedopplerwindlidaraerosolelasticlidarandmicrowaveradiometer |