Evolution of substrate specificity in a retained enzyme driven by gene loss

The connection between gene loss and the functional adaptation of retained proteins is still poorly understood. We apply phylogenomics and metabolic modeling to detect bacterial species that are evolving by gene loss, with the finding that Actinomycetaceae genomes from human cavities are undergoing...

Full description

Bibliographic Details
Main Authors: Ana Lilia Juárez-Vázquez, Janaka N Edirisinghe, Ernesto A Verduzco-Castro, Karolina Michalska, Chenggang Wu, Lianet Noda-García, Gyorgy Babnigg, Michael Endres, Sofía Medina-Ruíz, Julián Santoyo-Flores, Mauricio Carrillo-Tripp, Hung Ton-That, Andrzej Joachimiak, Christopher S Henry, Francisco Barona-Gómez
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2017-03-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/22679
_version_ 1811227638513008640
author Ana Lilia Juárez-Vázquez
Janaka N Edirisinghe
Ernesto A Verduzco-Castro
Karolina Michalska
Chenggang Wu
Lianet Noda-García
Gyorgy Babnigg
Michael Endres
Sofía Medina-Ruíz
Julián Santoyo-Flores
Mauricio Carrillo-Tripp
Hung Ton-That
Andrzej Joachimiak
Christopher S Henry
Francisco Barona-Gómez
author_facet Ana Lilia Juárez-Vázquez
Janaka N Edirisinghe
Ernesto A Verduzco-Castro
Karolina Michalska
Chenggang Wu
Lianet Noda-García
Gyorgy Babnigg
Michael Endres
Sofía Medina-Ruíz
Julián Santoyo-Flores
Mauricio Carrillo-Tripp
Hung Ton-That
Andrzej Joachimiak
Christopher S Henry
Francisco Barona-Gómez
author_sort Ana Lilia Juárez-Vázquez
collection DOAJ
description The connection between gene loss and the functional adaptation of retained proteins is still poorly understood. We apply phylogenomics and metabolic modeling to detect bacterial species that are evolving by gene loss, with the finding that Actinomycetaceae genomes from human cavities are undergoing sizable reductions, including loss of L-histidine and L-tryptophan biosynthesis. We observe that the dual-substrate phosphoribosyl isomerase A or priA gene, at which these pathways converge, appears to coevolve with the occurrence of trp and his genes. Characterization of a dozen PriA homologs shows that these enzymes adapt from bifunctionality in the largest genomes, to a monofunctional, yet not necessarily specialized, inefficient form in genomes undergoing reduction. These functional changes are accomplished via mutations, which result from relaxation of purifying selection, in residues structurally mapped after sequence and X-ray structural analyses. Our results show how gene loss can drive the evolution of substrate specificity from retained enzymes.
first_indexed 2024-04-12T09:45:33Z
format Article
id doaj.art-8757720966d641749ea07358e6bb7cad
institution Directory Open Access Journal
issn 2050-084X
language English
last_indexed 2024-04-12T09:45:33Z
publishDate 2017-03-01
publisher eLife Sciences Publications Ltd
record_format Article
series eLife
spelling doaj.art-8757720966d641749ea07358e6bb7cad2022-12-22T03:37:57ZengeLife Sciences Publications LtdeLife2050-084X2017-03-01610.7554/eLife.22679Evolution of substrate specificity in a retained enzyme driven by gene lossAna Lilia Juárez-Vázquez0Janaka N Edirisinghe1Ernesto A Verduzco-Castro2Karolina Michalska3Chenggang Wu4Lianet Noda-García5Gyorgy Babnigg6Michael Endres7Sofía Medina-Ruíz8Julián Santoyo-Flores9Mauricio Carrillo-Tripp10Hung Ton-That11Andrzej Joachimiak12Christopher S Henry13Francisco Barona-Gómez14https://orcid.org/0000-0003-1492-9497Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, MexicoComputing, Environment and Life Sciences Directorate, Argonne National Laboratory, Lemont, United States; Computation Institute, University of Chicago, ChicagoEvolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, MexicoMidwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Lemont, United States; Structural Biology Center, Biosciences Division, Argonne National Laboratory, Lemont, United StatesDepartment of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, United StatesEvolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, MexicoMidwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Lemont, United StatesMidwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Lemont, United StatesEvolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, MexicoCinvestav-IPN, MexicoCinvestav-IPN, MexicoDepartment of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, United StatesMidwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Lemont, United States; Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, United States; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United StatesComputing, Environment and Life Sciences Directorate, Argonne National Laboratory, Lemont, United States; Computation Institute, University of Chicago, ChicagoEvolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, MexicoThe connection between gene loss and the functional adaptation of retained proteins is still poorly understood. We apply phylogenomics and metabolic modeling to detect bacterial species that are evolving by gene loss, with the finding that Actinomycetaceae genomes from human cavities are undergoing sizable reductions, including loss of L-histidine and L-tryptophan biosynthesis. We observe that the dual-substrate phosphoribosyl isomerase A or priA gene, at which these pathways converge, appears to coevolve with the occurrence of trp and his genes. Characterization of a dozen PriA homologs shows that these enzymes adapt from bifunctionality in the largest genomes, to a monofunctional, yet not necessarily specialized, inefficient form in genomes undergoing reduction. These functional changes are accomplished via mutations, which result from relaxation of purifying selection, in residues structurally mapped after sequence and X-ray structural analyses. Our results show how gene loss can drive the evolution of substrate specificity from retained enzymes.https://elifesciences.org/articles/22679evolution by gene lossgenome decayenzyme substrate specificityActinomycesHistidine and tryprophan biosynthesisphosphoribosyl isomerase A
spellingShingle Ana Lilia Juárez-Vázquez
Janaka N Edirisinghe
Ernesto A Verduzco-Castro
Karolina Michalska
Chenggang Wu
Lianet Noda-García
Gyorgy Babnigg
Michael Endres
Sofía Medina-Ruíz
Julián Santoyo-Flores
Mauricio Carrillo-Tripp
Hung Ton-That
Andrzej Joachimiak
Christopher S Henry
Francisco Barona-Gómez
Evolution of substrate specificity in a retained enzyme driven by gene loss
eLife
evolution by gene loss
genome decay
enzyme substrate specificity
Actinomyces
Histidine and tryprophan biosynthesis
phosphoribosyl isomerase A
title Evolution of substrate specificity in a retained enzyme driven by gene loss
title_full Evolution of substrate specificity in a retained enzyme driven by gene loss
title_fullStr Evolution of substrate specificity in a retained enzyme driven by gene loss
title_full_unstemmed Evolution of substrate specificity in a retained enzyme driven by gene loss
title_short Evolution of substrate specificity in a retained enzyme driven by gene loss
title_sort evolution of substrate specificity in a retained enzyme driven by gene loss
topic evolution by gene loss
genome decay
enzyme substrate specificity
Actinomyces
Histidine and tryprophan biosynthesis
phosphoribosyl isomerase A
url https://elifesciences.org/articles/22679
work_keys_str_mv AT analiliajuarezvazquez evolutionofsubstratespecificityinaretainedenzymedrivenbygeneloss
AT janakanedirisinghe evolutionofsubstratespecificityinaretainedenzymedrivenbygeneloss
AT ernestoaverduzcocastro evolutionofsubstratespecificityinaretainedenzymedrivenbygeneloss
AT karolinamichalska evolutionofsubstratespecificityinaretainedenzymedrivenbygeneloss
AT chenggangwu evolutionofsubstratespecificityinaretainedenzymedrivenbygeneloss
AT lianetnodagarcia evolutionofsubstratespecificityinaretainedenzymedrivenbygeneloss
AT gyorgybabnigg evolutionofsubstratespecificityinaretainedenzymedrivenbygeneloss
AT michaelendres evolutionofsubstratespecificityinaretainedenzymedrivenbygeneloss
AT sofiamedinaruiz evolutionofsubstratespecificityinaretainedenzymedrivenbygeneloss
AT juliansantoyoflores evolutionofsubstratespecificityinaretainedenzymedrivenbygeneloss
AT mauriciocarrillotripp evolutionofsubstratespecificityinaretainedenzymedrivenbygeneloss
AT hungtonthat evolutionofsubstratespecificityinaretainedenzymedrivenbygeneloss
AT andrzejjoachimiak evolutionofsubstratespecificityinaretainedenzymedrivenbygeneloss
AT christophershenry evolutionofsubstratespecificityinaretainedenzymedrivenbygeneloss
AT franciscobaronagomez evolutionofsubstratespecificityinaretainedenzymedrivenbygeneloss