Comparative performance of ex situ artificial solid electrolyte interphases for Li metal batteries with liquid electrolytes

Summary: The design of artificial solid electrolyte interphases (ASEIs) that overcome the traditional instability of Li metal anodes can accelerate the deployment of high-energy Li metal batteries (LMBs). By building the ASEI ex situ, its structure and composition is finely tuned to obtain a coating...

Full description

Bibliographic Details
Main Authors: Francesca Lorandi, Tong Liu, Marco Fantin, Joe Manser, Ahmed Al-Obeidi, Michael Zimmerman, Krzysztof Matyjaszewski, Jay F. Whitacre
Format: Article
Language:English
Published: Elsevier 2021-06-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004221005460
Description
Summary:Summary: The design of artificial solid electrolyte interphases (ASEIs) that overcome the traditional instability of Li metal anodes can accelerate the deployment of high-energy Li metal batteries (LMBs). By building the ASEI ex situ, its structure and composition is finely tuned to obtain a coating layer that regulates Li electrodeposition, while containing morphology and volumetric changes at the electrode. This review analyzes the structure-performance relationship of several organic, inorganic, and hybrid materials used as ASEIs in academic and industrial research. The electrochemical performance of ASEI-coated electrodes in symmetric and full cells was compared to identify the ASEI and cell designs that enabled to approach practical targets for high-energy LMBs. The comparative performance and the examined relation between ASEI thickness and cell-level specific energy emphasize the necessity of employing testing conditions aligned with practical battery systems.
ISSN:2589-0042