Genome-wide identification and characterization of NBS-encoding genes in the sweet potato wild ancestor Ipomoea trifida (H.B.K.)

The most predominant type of resistance (R) genes contain nucleotide-binding sites and leucine-rich repeat (NBS-LRR) domains, characterization of which is helpful for plant resistance improvement. However, the NBS genes of Ipomoea trifida (H.B.K.) remain insufficient to date. In this study, a genome...

Full description

Bibliographic Details
Main Authors: Si Zengzhi, Qiao Yake, Zhang Kai, Ji Zhixin, Han Jinling
Format: Article
Language:English
Published: De Gruyter 2022-05-01
Series:Open Life Sciences
Subjects:
Online Access:https://doi.org/10.1515/biol-2022-0052
Description
Summary:The most predominant type of resistance (R) genes contain nucleotide-binding sites and leucine-rich repeat (NBS-LRR) domains, characterization of which is helpful for plant resistance improvement. However, the NBS genes of Ipomoea trifida (H.B.K.) remain insufficient to date. In this study, a genome-wide analysis of the NBS-encoding gene in I. trifida (H.B.K.) was carried out. A total of 442 NBS encoding genes were identified, amounting to 1.37% of the total genes of I. trifida (H.B.K.). Based on the analysis of the domains, the identified ItfNBS genes were further classified into seven groups: CNL, NL, CN, N, TNL, TN, and RNL. Phylogenetic analysis showed that the I. trifida NBS genes clustered into three independent clades: RNL, TNL, and CNL. Chromosome location analysis revealed that the distribution of ItfNBS genes in chromosomes was uneven, with a number ranging from 3 to 45. Multiple stress-related regulatory elements were detected in the promoters of the NBS-encoding genes, and their expression profiles were obtained. The qRT-PCR analysis revealed that IbNBS10, IbNBS20, IbNBS258, and IbNBS88 responded to stem nematode infection. These results provide critical proof for further characterization and analysis of NBS-encoding genes with important functions.
ISSN:2391-5412